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ABSTRACT 

 
The increase in the number of overweight and obese individuals is a public health 

concern due to correlations of obesity with increased incidence of chronic diseases such as 

type 2 diabetes and cardiovascular disease. Population data have shown correlations between 

increased fiber consumption and lower body weight and body mass index (BMI). However, 

the exact nature of this relationship is not known. 

 
There is considerable variation between different types of fiber and their potential 

impacts on the physiological regulatory systems of appetite and body weight. The goal of the 

research presented in this dissertation is to explore the effects of non-viscous, fermentable 

fiber on appetite and food intake in healthy adults. Collective results from the studies will be 

used to evaluate short-term appetite and food intake changes as a potential mechanism 

linking fiber consumption and lower body weight.  

 
We hypothesized that increased resistant starch (RS4)/resistant dextrin consumption 

will promote satiation and decrease ad libitum food intake at the next meal. We further 

hypothesized that increased RS4/resistant dextrin consumption will increase postprandial 

satiety as measured by subjective appetite ratings and that this effect will be modulated 

through changes in plasma biomarkers of appetite. As addition of fiber to a mixed meal can 

alter the glycemic response of that meal, we are also interested in effect of RS4/resistant 

dextrin on postprandial glucose and insulin responses.   

 
  To test these hypotheses, a series of experiments were conducted. In the first study, 

all-purpose flour was replaced with Fibersym® resistant starch flour in a breakfast meal 
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(control: 2g fiber, treatment: 24g fiber). Twenty-seven healthy adults (age: 23±2 years, BMI: 

23.0±3.1 kg/m2) participated in the study. Although there were no statistically significant 

treatment effects observed for satiety or blood measures (p > 0.05), caloric intake over the 

entire test day was lower for the resistant starch treatment group after data was normalized 

(p=0.05).  

 
To investigate potential timing effects of fiber consumption, we conducted a study 

using one of three isocaloric beverages providing 0, 10 or 20g fiber from soluble fiber dextrin 

(SFD) with the lunch meal. Forty-one healthy adults (age: 24±4 years, BMI: 23.4±2.5 kg/m2) 

participated in the study. Glucose-dependent Insulinotropic Peptide (GIP) was lower for the 

20g fiber from SFD treatment as compared to control (p = 0.0001). However, no other 

treatment differences in blood measures were observed (p > 0.05). Additionally, there were 

no treatment effects on subjective appetite or food intake during the first 150 minutes post 

consumption of treatment beverages (p > 0.05). After participants left the lab, the 20g fiber 

from SFD treatment group was shown to have lower mean hunger (p = 0.005) and desire to 

eat (p = 0.0001) and higher fullness (p = 0.002) as compared to control. There was no 

treatment effect on food intake based on diet diaries or total day consumption (p > 0.05). 

 
  In a final study, two sources of SFD (corn and tapioca) and two doses (10 and 20g) of 

fiber were tested along with a control group. Half of the treatment dose was provided in 

beverage form at the breakfast meal and half was provided 2 hours later in the form of a 

snack bar. Participants remained in the lab for 10 hours after breakfast and breath hydrogen 

measures were taken as an indication of colonic fermentation. Forty-three healthy adults 

(age: 24±4 years, BMI: 23.6±3.5 kg/m2) participated in the study. Breath hydrogen showed a 
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statistically significant dose response of SFD. However, there were no other treatment 

differences observed for blood measures, appetite or food intake over the test day.  

 
In conclusion, results from these studies demonstrate that under laboratory conditions, 

increased resistant starch/resistant dextrin consumption did not affect ad libitum food intake 

or subjective appetite ratings. Although in free-living conditions, appetite and food intake 

changes were observed, they were modest in magnitude and inconsistent between studies. 

Furthermore, while we report evidence of resistant dextrin fermentation in healthy young 

adults, there is no robust effect of biomarkers of satiety or glycemic response. These results 

are important as they show that a single dose of 10-20g non-viscous, fermentable fiber is not 

sufficient to impact next meal energy intake. Additionally the overall findings do not support 

short-term changes in appetite as an underlying mechanism to link potential effects of fiber 

on body weight. 
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CHAPTER 1  

 GENERAL INTRODUCTION 

 

Introduction 

 
Research interest in appetite and the physiological regulation of body weight is largely 

focused on reducing the obesity epidemic. Obesity is a state of excess body fat that has negative 

impacts on an individual’s overall health. Body mass index (BMI) is a ratio of an individual’s 

weight in relation to his or her height and is typically used to classify obesity. Research has 

shown that BMI is strongly correlated with the gold-standard methods for direct measurement of 

body fat such hydro-densitometry or dual-energy x-ray absorptiometry (DXA) [1]. Additionally, 

it is a simple and inexpensive way for clinicians to identify individuals who might be at greater 

risk of health problems due to their weight [2]. Data from the 2013 Behavioral Risk Factor 

Surveillance System (BRFSS) survey reported nearly two thirds of the adult US population are 

overweight (25.0 ≤ BMI ≤ 29.9 kg/m2) or obese (BMI ≥ 30.0 kg/m2).  These self-reported data 

reflect population-sampling data from the National Health and Nutrition Examination Survey 

(NHANES) [3, 4]. Gender analysis showed that 47% of men and 22% of women were 

overweight, while the prevalence of obesity was 33% and 36% for men and women respectively 

[5, 6]. 

 
As a person’s body fat increases, their risk of developing obesity-related illness such as 

type 2 diabetes mellitus, cardiovascular disease and certain types of cancer also rises [7-10]. 

Recent meta-analysis data estimate that for every unit increase in BMI (1 kg/m2) adults age 30-

59 the risk of developing type 2 diabetes increases by 20%. The same is true for the development 
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of hypertensive disease [11]. Obesity also increases medical costs by as much as 42% as 

compared to normal weight individuals [12]. For these reasons, decreasing the prevalence of 

obesity is a major public health concern in the United States as well as other developed 

countries.  

 
A number of epidemiological studies link increased fiber consumption with and lower 

body weight [13] lower body fat [14] and lower BMI [15, 16]. Although numerous mechanisms 

by which fiber could impact satiety and body weight have been suggested [17], establishing a 

causal relationship is difficult due to the complex nature of fiber. There are numerous types of 

fiber each with unique physical properties and potential impacts on various aspects of human 

health. Generally speaking, fiber is the portion of plant material that is resistant to enzymatic 

digestion and can be separated into three broad categories: (1) complex carbohydrates, such as 

cellulose and hemicellose, that contribute to the structural integrity of plant cells, so called non-

starch polysaccharides (NSPs), (2) non-carbohydrate substances, such as lignin and waxes, that 

form complexes with NSPs in cell walls, and (3) non-structural carbohydrates that are resistant to 

digestion [18, 19].   

 
Although increased fiber consumption may be a useful strategy to manage body weight 

and decrease the number of overweight and obese individuals, dietary fiber intake is below 

recommended levels in many countries. In the U.S. the average intake for men and women is 

approximately half of recommended amounts. [20, 21]. Furthermore, interventions focused on 

increasing the consumption of high fiber foods such as fruits and vegetables have had limited 

success in increasing fiber intake [22, 23]. Therefore, fiber fortification of commonly eaten foods 

may be a more effective strategy for appetite and weight management interventions. Unlike 
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naturally occurring dietary fiber which are primarily NSPs and non-carbohydrate substances, 

fiber fortification generally utilizes non-structural carbohydrate fibers. Examples include 

resistant starches and resistant dextrins because their bland taste and stability across a wide range 

of pH and temperatures makes them easy to incorporate into a wide variety of commercial foods 

[24, 25]. For that reason, resistant starch and resistant dextrin will be the focus of this 

dissertation. 

 
Resistant starches (RS) can be classified according to physical structure and nutritional 

characteristics. RS1 is physically surrounded by indigestible material making the starch 

inaccessible to digestion. RS1 is found in whole grains, seeds and legumes. RS2 is granular type 

raw starch found in high amylose corn and unripe bananas whose resistance is conferred by tight 

packing of starch granules. RS3 is retrograde starch that becomes resistant through the cooking 

and cooling process. During heating, amylose leaches from starch granules into solution forming 

densely packed, double helices upon cooling which help stabilize hydrogen bonds and makes the 

starch resistant to digestion. Starches of the RS4 type have been chemically modified, for 

example through treatment with distarchphophaste ester which creates phosphate cross linkages 

between starch molecules, rendering them resistant to digestion [25, 26]. A fifth type of resistant 

starch has been proposed (RS5) in which starch accessibility to enzymes is limited by the 

formation of starch-lipid complexes. However, because these lipid complexes are created 

through chemical modification of the native starch, these complexes may be considered a subset 

of the RS4 type. 

 
Resistant dextrins are low-molecular-weight polysaccharides produced through 

modification of individual starch molecules. For example, Soluble fiber dextrin (SFD) is 
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produced from heat and acid treatment of corn, wheat or tapioca starch to induced branching and 

increase the number of α-1,6-glycosidic bonds as compared to the original starch [27-29]. The 

resulting product, SFD, is resistant to enzymatic digestion and represents yet another potential 

fiber variation. With the creation of numerous chemical modified starches each with their own 

unique physical properties, the potential physiological impacts of these ingredients vary greatly. 

In 2009 the Codex Alimentarius Commission (CODEX) proposed that any synthetic or chemical 

modified carbohydrate polymer must be shown to have a physiological benefit to humans before 

it can be defined as fiber [30]. As a result, there is a need to test these novel starches for their 

potential effects on human appetite. 

 
 There are a number of physiological mechanisms through which fiber is thought to 

impact appetite and food intake in humans. These mechanisms are highly variable depending on 

the food matrix of the fiber and its chemical properties. For example NSP from naturally 

occurring produce are though do decrease energy intake in part through bulking and increased 

mastication to slow eating rate [31]. Viscous fibers such guar gum are thought to increase satiety 

through and decreased gastric emptying and delayed nutrient absorption [32-33]. Finally, of 

greatest relevance to the fiber types discussed in this dissertation, non-viscous, fermentable fibers 

are thought to impact appetite through energy capture and downstream signaling of short-chain 

fatty acids (SCFAs) [34-35]. Although a recent systematic review evaluating the impact of fiber 

on appetite and food intake in humans included data from over 40 studies, [36] none of these 

studies investigated RS4 or resistant dextrins. Therefore, the purpose of my dissertation work is 

to test the impact of RS4 and resistant dextrin on appetite and food intake in humans with 

particular interest on the physiological changes that may mediate any observed effects. 
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Dissertation Organization 

 
The dissertation begins with an overall introduction, followed by a review of the 

physiological regulation of appetite and food intake as well as the influence of fiber on these 

systems. The next three chapters consist of manuscripts summarizing projects conducted during 

my PhD work. The first study, “Effect of resistant wheat starch on subjective appetite and food 

intake in healthy adults” investigates a commercially available RS4 (Fibersym®RW). The 

following two manuscripts, “The effect of soluble fiber dextrin on postprandial appetite and 

subsequent food intake in healthy adults” and “The effect of soluble fiber dextrin on subjective 

and physiological markers of appetite” explore the effects of a novel, propriety source of SFD. 

These manuscripts include inputs from co-authors, who have contributed to experimental design, 

data collection and analysis, as well as manuscript preparation. Following the presentation of 

these manuscripts, a general conclusion chapter is presented to summarize the overall findings, 

followed by recommendations for future research. 
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CHAPTER 2  

 LITERATURE REVIEW 

 

Physiological Regulation of Body Weight and Food Intake 

 
Theories of body weight regulation 

Despite an overall population shift towards higher body weight, individuals are fairly 

weight stable throughout much of their adult lives with an average annual weight gain of 1-2 

pounds [1]. Using the National Institute of Health (NIH) body weight planner, a two pound 

weight gain averaged over an entire year, assuming no change in physical activity, requires 

only a 30 kcal/day intake over energy requirements [2]. However, humans do not typically 

gain weight in an even pattern, usually experiencing long periods of weight stability 

interspersed with short period of rapid weight change (i.e. the holiday season, freshman 

fifteen, etc.) [3, 4].  Although most people experience weight gain over decades, these same 

people still experience long periods of weight stability. The ability to maintain body weight 

over an extended period of time suggests a robust mechanism that consistently matches 

energy intake and expenditure. 

 
One of the earliest body weight regulation theories is the Lipostatic Model of Body 

Fat Regulation or simply the set point theory. Proposed by Gordon Kennedy in 1953, the set 

point theory postulates the existence of a signal that communicates a person’s current state of 

body fatness to the brain where it is compared to a predetermined “ideal” body fat amount for 

that individual [5, 6]. A signal reading higher than the set point would drive intake down and 

increase expenditure to restore the set point. Alternatively, a signal lower than the set point 
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would increase intake and drive expenditure down to promote weight gain. Despite the 

discovery of leptin, an adiposity signal, and the ability of the theory to provide an 

explanation for the common failure of dieting to promote long-term weight loss, there are 

many limitations to this concept of body weight regulation [7, 8]. Firstly, changes in fat mass 

only account for small changes in body weight and the set point theory does not account for 

regulation of lean body mass [9]. Secondly, this theory cannot explain the rapid increase in 

the incidence of obesity as there is no evolutionary explanation that could explain a sudden 

upshift in overall population set points of body weight. Finally, the set point theory is entirely 

physiological and does not take into account any cultural or socioeconomic factors that may 

impact body weight [10, 11]. 

 
An alternative theory for body weight regulation is in many ways the opposite of the 

set point theory.  The settling point theory claims there is no active defense of body weight 

and that changes in body weight are the result of environmental stimuli. In other words, body 

weight is the result of a dynamic equilibrium between inputs (food intake) and outputs 

(energy expenditure).  Any imbalance between food intake and energy expenditure results in 

a change in body weight that stabilizes the original imbalance [11, 12]. The ubiquitous, 

obesogenic environment that has developed in western societies over the past 50 years 

consists of larger portion sizes, increased tendency to eat outside the home, and ease of 

access to highly palatable, high energy density foods [13, 14].  The settling point theory helps 

to explain the connection between these societal changes and the sudden increase in obesity 

incidence; however, the theory has its own limitations. For example, energy restriction 

studies have shown that during weight loss, resting energy expenditure decreases by a 

magnitude much greater than what would be induced by falling body weight indicating that it 
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is being actively driven down to counteract the body weight loss [15, 16]. Also, the settling 

point theory does not explain the large variation in weight gain between individuals subjected 

to the same environment [1, 17]. Both limitations indicate that there must be a genetic or 

physiological component that is also contributing to body weight regulation.  

 
The dual intervention point model combines both physiological and environmental 

influences on body weight regulation into a single theory.  In this model, there are two 

independently regulated body fatness set points that define the boundaries outside of which 

physiological regulation drives body weight. Between the two set points, environmental 

factors are the major influence allowing body weight to fluctuate more freely in this region 

[11, 18]. Evolutionary based theories propose that the lower set point developed to protect 

against starvation while the upper set point ensures the ability to evade predators [18, 19]. 

Invention of tools and establishment of community based societies weakened the need for 

humans to protect against predation perhaps resulting in the development of genetic 

variations that increased the upper set point. Genetic differences in the distance between the 

upper and lower regulatory bounds and may help to explain variation in inter-individual 

susceptibility to environmental influences [11]. High susceptibility to obesogenic, 

environmental stimuli over most of an individual’s body weight range could have the 

appearance of no physiological control to prevent weight gain. In this way, the dual 

intervention point model helps to explain the apparent asymmetry in body weight regulation 

that has been observed [20, 21]. Additionally, increases in the upper set point beyond the 

socially acceptable limit to body weight may contribute to the perceived severity of the 

obesity epidemic in some countries. Although 50-70% of variance in BMI is thought to be 

genetic, it is important to remember that genetic and environmental factors do not impact 
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physiology independently of each other [22, 23]. Countless combinations of gene-gene and 

gene-environment interactions create an extremely complex system for body weight 

regulation that is not yet fully understood. 

 
Hypothalamic regulation of energy homeostasis 

These aforementioned theories in body weight regulation are supported by complex, 

physiological systems centered on the brain’s interpretation of periphery signals. The human 

brain can be divided into three main segments: the hindbrain, midbrain and forebrain the 

latter of which consists of the cerebellum, thalamus and hypothalamus. The hypothalamus 

plays an essential role in energy homeostasis due to its ability to sense and process various 

signals from the body related to energy reserves, translating that information into signals that 

alter food intake and energy expenditure [24, 25]. The hypothalamus is composed of several 

functional domains defined by clusters of nuclei. Early research to determine the specifics of 

hypothalamic processing utilized brain lesion and stimulation techniques, identifying the 

ventromedial hypothalamic nucleus (VMN) and the lateral hypothalamic area (LHA) as the 

satiety and hunger centers respectively. VMN stimulation resulted in suppressed food intake 

while LHA stimulation increased intake. Conversely, induced lesions in the VMN led to 

hyperphagia and obesity with loss of LHA function driving food intake and body weight 

down [24, 26]. Although informative, these studies lacked precision, in that stimulation or 

lesioning of a target area tended to activate or damage nearby areas of the brain as well [27]. 

Additionally, due to the amount of back and forth signaling between areas of the 

hypothalamus and other regions of the brain, it is unknown whether the targeted regions are 

the main source of a response, or if they act as a relay station to other areas of the brain. 

Redundancy in hypothalamic signaling pathways is also supported by observed regulation 
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recovery in animals undergoing lesioning procedures [28]. As knowledge about the inner 

working of the hypothalamus grows, the concept of precise locations for satiety and hunger 

has been replaced with specific stimulant-response neuronal pathways [27, 29].  

 
The concept of first/second order neuronal signaling in the hypothalamus is one 

attempt to clarify the pathways involved in energy homeostasis. The arcuate nucleus (ARC) 

of the hypothalamus is responsible for first order signaling and functions to relay sensory 

information regarding energy stores and current intake to other areas of the hypothalamus 

[27, 30].  The pathway begins with stimulation of two distinct cell populations within the 

ARC. Orexigenic responsive neurons co-express agouti-related peptide (AgRP) and 

neuropeptide Y (NPY). Anorexigenic responsive neurons co-express proopiomelanocortin 

(POMC) and cocaine and amphetamine regulated transcript (CART). The mechanisms by 

which POMC/CART and AgRP/NPY exhibit their respective downstream effects is thought 

to be mediated by second order neuronal signaling in the paraventricular nucleus (PVN) and 

LHA which further relays information to other parts of the brain and periphery [27, 30-32]. 

POMC/CART neurons of the ARC signal to the PVN where POMC is converted to a number 

of neuropeptides including α-melanocyte stimulating hormone (α-MSH) an agonist of the 

melanocortin 4 receptors (MC4Rs) located in this region of the hypothalamus [31-34]. 

Activation of MC4Rs results in the suppression of food intake and elevation of energy 

expenditure [35-37]. CART has also been shown to inhibit food intake in animal models; 

however, the mechanism of action most likely involves relays through serotonin receptors in 

the hindbrain rather than the hypothalamus [38-40]. Orexigenic ARC neurons also signal to 

the PVN within the hypothalamus, however AgRP acts as an antagonist to MC4Rs through 

competitive binding and inverse agonism of the receptor [41, 42]. Inhibition of MC4Rs 
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promotes increased feeding and decreased energy expenditure as exemplified by MC4R 

knockout mice that exhibit an obese phenotype [43, 44]. Finally, NPY is one of the most 

potent orexigenic molecules known. Part of the pancreatic peptide-fold (PP-fold) family of 

molecules, this signal exerts its effects through interaction with a family of G-protein 

receptors (Y1 – Y5) expressed throughout the body including the hypothalamus, thyroid, 

digestive system and adipose tissue [40, 45]. Orexigenic ARC neurons also project to the 

LHA where NPY and AgRP stimulate orexins and melanin concentrating hormone (MCH) 

release, which has been shown to increase food intake in rodent models [31, 38, 46, 47]. 

 
The blood brain barrier has a higher degree of permeability near the ARC, which 

allows neurons in this region of the hypothalamus to receive signals about energy balance 

directly from the blood. Signals, such as leptin and insulin, provide information on body fat 

content and current metabolic state.  Insulin is a hormone secreted by pancreatic β cells that 

signals an anabolic state, having downstream effects on carbohydrate, protein and fat 

metabolism and storage.  In terms of body weight regulation, studies have shown that the 

amount of both basal and post-prandial insulin secretion is highly correlated with body 

weight and may be dependent on the amount of white adipose tissue in the body [27, 48, 49]. 

Furthermore, both orexigenic and anorexigenic ARC neurons express a high concentration of 

insulin receptors. Administration of insulin in the ARC functions to inhibit AgRP/NPY 

neurons and stimulate POMC/CART neurons resulting in decreased energy intake, increased 

energy expenditure and net weight loss in animal models [50-53]. While these studies are 

useful in clarifying signaling pathways, they are an oversimplification of insulin’s effect on 

food intake under physiological conditions. For example, although insulin reaches the brain 

in concentrations proportional to plasma circulation amounts, increased plasma insulin 
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typically results in hypoglycemia, which drives food intake up [49, 54, 55]. Additionally, 

insulin deficiency is not associated with hyperphagia or obesity [10, 27, 52]. In fact, 

hyperinsulinemia and Type 2 diabetes are common comorbidities of obesity [56-59]. 

Although a causal link to obesity has not been established, it is possible that the insulin 

resistance characteristic of Type 2 diabetes also affects body weight regulation pathways 

making weight loss more difficult. 

 
In addition to its own role in energy homeostasis, insulin also influences the secretion 

of the adiposity signal leptin. Leptin is an anorexigenic peptide primarily secreted in white 

adipose tissue [31, 60]. Although the exact mechanisms are still unclear, research has shown 

that insulin-stimulated glucose utilization in adipocytes may be an underlying factor in 

stimulation of leptin secretion [61-63].  As is the case for insulin, neurons within the ARC 

express leptin receptors and administration of leptin to the hypothalamus stimulates 

POMC/CART and inhibits AgRP/NPY signaling [64-66]. The role of leptin in body weight 

regulation was solidified through a series of parabiosis experiments using mice with specific 

genetic deficiencies. The ob/ob mouse does not produce leptin as the result of a gene 

mutation, but has intact leptin receptors. The db/db mouse, on the other hand, is autosomal 

recessive for a mutation that makes the leptin receptor inactive although the leptin molecule 

is still produced normally. Both mouse models have an obese phenotype. However when 

parabiotically joined to genetically normal mice, the obese phenotype is reversed in ob/ob, 

but not db/db mice. Additionally, joining ob/ob and db/db mice allows leptin produced in the 

db/db mouse to circulate to the ob/ob mouse reversing the obese phenotype of ob/ob mouse 

[67-71]. These results indicated the potential for obesity resulting from a leptin deficiency to 

be reversed through exogenous leptin supplementation.  Despite this seemingly simple 
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pharmacological treatment for obesity, further research in humans showed that the majority 

of obese individuals exhibit normal or elevated plasma leptin concentrations identifying 

leptin resistance as a key concern [72-74]. One potential mechanism for decreased leptin 

sensitivity is expression of inhibitor molecules in the ARC. Like other cytokine receptors, 

activation of the leptin receptor triggers release of Suppressor of Cytokine Signaling-3 

(SOCS-3), which inhibits further leptin signal transduction [75-77]. Deficiency of SOCS-3 

has been shown to improve sensitivity to leptin signaling in the brain, however, it remains 

unclear whether leptin resistance is a cause or a result of obesity [78-80].   

 
Hindbrain regulation of food intake 

The intuitive relationship between food intake and changes in body weight is the 

basic premise for short-term appetite studies. Throughout much of the 20th century, meal 

initiation was thought to be controlled by factors related to energy availability. The 

Glucostatic Theory of food intake for example proposed that reduced plasma concentrations 

of glucose triggered a response in the brain to increase hunger and initiate food intake [54, 

81, 82]. Thus, food intake was a means for maintaining energy homeostasis with meal size 

being dictated by the amount of energy needed to restore balance [83]. Investigation into this 

theory showed numerous limitations such as insulin induced, supra-physiological drops in 

plasma glucose being needed to cause meal initiation in animals and meals being initiated 

without a corresponding drop in glucose in humans [84, 85]. As a result, similar theories 

have been proposed with the alternative signals such as hepatic fatty acid utilization, ATP 

generation, and body heat [10]. One major flaw with all available energy driven models of 

meal initiation is the timeline over which the proposed signal is responsive to food intake. 

There is a significant delay between ingestion of food and nutrient absorption. While taste is 
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a predictor of energy content, modern food additives such as non-caloric sweeteners and 

monosodium glutamate (MSG) may decrease the reliability between taste perception and 

actual energy content, making the body dependent on downstream indicators of energy 

balance [86-88]. Digestion, absorption and metabolism of food are required for changes in 

energy balance to occur. Therefore, the true energy content of the meal may not be known 

until hours after meal cessation [27, 89]. Thus, complex system involving signals from 

different stages of energy consumption and digestion is currently hypothesized to govern 

meal size and satiety.  

 
While the forebrain is important for long-term energy homeostasis, the hindbrain-gut-

axis is important for individual meal size regulation. The hindbrain consists of numerous 

structures including the medulla, which plays an important role in food intake. The medulla 

is located on the lower part of the brainstem and controls numerous autonomic functions 

including those associated with digestion [90]. The term cephalic phase response refers to 

autonomic, physiological responses to food cues in anticipation of meal initiation that 

function to increase the efficiency with which the gastrointestinal tract digests and absorbs 

nutrients. Such responses include salivation, secretion of gastric and pancreatic enzymes and 

changes in gut motility [91, 92]. Cephalic phase signaling occurs via a cluster of neurons 

within the medulla known as the solitary nucleus (NTS for the Latin nucleus tractus solitarii). 

Projections from the NTS innervate the mouth, esophagus, stomach, and intestines with 

efferents eliciting physiological responses and afferents relaying sensory information back to 

the brain [93, 94]. Although there is two-way communication between the NTS and various 

regions of the hypothalamus, physiological response for meal initiation and cessation is 

largely autonomically controlled and is not thought to require forebrain processing [95, 96].  
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Once a meal is initiated, the ability for the medulla to regulate meal size is highly 

reliant on signals that provide information on the quantity and energy content of food being 

consumed. In the mouth, afferent taste fibers collect information on the five basic tastes 

(sweet, salty, sour, bitter and umami) in addition to texture and temperature information. This 

sensory experience of the meal is transferred to the NTS via the trigeminal nerve, which 

results in classification of the ingested substance as nutritive or toxic with subsequent reflex 

to accept or reject that item [97]. Food preferences develop through NTS signaling with 

downstream nutrient absorption providing positive reinforcement for consumption of similar 

tasting food. Multiple experiences with the same food create changes in neural pathways of 

the NTS that more strongly link taste and expected nutritive content [87, 98]. In addition to 

taste, afferents receptive to touch are also important signals to the NTS. Pressure afferents 

located throughout the esophagus and mucosa of the stomach function to detect the presence 

of ingested food signaling that a meal has been initiated [96, 99, 100].  Mechanoreceptors 

located within the muscle layers of the stomach are responsive to both gastric distension and 

active contractions and function to relay information regarding the amount of food consumed 

back to the NTS [101-103]. Previous research has mimicked the gastric distension that occurs 

during food intake with intra-gastric balloon inflation. Results from these studies show 

decreased food intake after acute balloon inflation indicating that gastric distension may be a 

potent signal for meal termination [104-106]. Further investigation however, showed that 

effects on food intake diminished with chronic distension indicating that adaptation to this 

signal is likely [107-109].  
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In order to discern information about the energy content of digested food, 

chemoreceptor vagal afferents responding to gut peptides are located throughout the 

gastrointestinal tract.  As proposed, gut peptides related to appetite all share certain key 

characteristics. First administration of the peptide has a predictable effect on food intake that 

is not the result of illness or abnormal processes. Secondly, administration of an antagonist to 

the signal produces the opposite effect on intake. Finally, appearance of the signal occurs as 

part of normal responses to ingested food [27, 83]. For ease of discussion, gut peptides will 

be separated by the physiological location where they are predominately secreted. However, 

it is important to keep in mind that these peptides do not act in isolation of each other. 

Depending on eating rate and meal content, up to 40% of a digesta can reach the small 

intestine before meal cessation occurs indicating that gastric and upper small intestinal gut 

peptides may signal energy information concurrently to the NTS [110]. Likewise, even 

though it takes hours for meal contents to reach the large intestine, colonic gut peptides may 

be interacting with gut peptides in the upper gastrointestinal tract that are responding to the 

next meal [111, 112].  Finally, while secreted in the gastrointestinal tract, gut peptides do not 

exhibit only local effects. As will be discussed below, research has shown changes in plasma 

concentrations of these peptides with exogenous administration having effects on appetite 

and long-term energy homeostasis. 

 
In addition to mechanosensory signals, the stomach also generates the gut peptide 

ghrelin. Ghrelin is a 28-amino acid peptide that is mainly secreted from cells in the mucosa 

of the stomach. This peptide undergoes post-translational acetylation with medium chain 

fatty acids which allows it to bind to growth hormone secretagogue receptor 1 (GHS-R1) 

[113].  To date, ghrelin is the only peripherally secreted hormone shown to increase food 
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intake in both rodents and humans [114-117]. Ghrelin exerts its orexigenic effects by 

interaction with vagal afferents as evidenced by the expression of GHS-R1 receptors on a 

subset of vagal neurons and an abolishment of appetite-stimulating effects in animals that 

have undergone surgical vagotomy [118, 119]. Unlike satiation peptides, ghrelin plasma 

concentrations increase before meals and are suppressed by food intake. It has been proposed 

that pre-prandial surges in ghrelin secretions are a cephalic phase response that may help 

increase the likelihood of meal initiation [114, 115, 120]. Alternatively, ghrelin induced 

increases in acid secretion and motility in the stomach suggests that its pre-prandial surges 

may be a physiological response to help prepare the body for food intake [121]. Interestingly, 

ghrelin has also been shown to play a role in long-term energy homeostasis. Stimulation of 

AgRP/NPY neurons in the hypothalamus by ghrelin may help to explain why this gut peptide 

is inversely correlated with body weight [122-124]. Pharmacological strategies to block 

ghrelin signaling have been proposed as a viable strategy for weight loss. Targets for these 

studies include inhibition of ghrelin O-acyltransferase, anti-ghrelin antibodies, and ghrelin-

receptor antagonists. Short-term studies in animals demonstrate effectiveness of these 

methods to decrease food intake and promote weight loss, however successful therapies in 

humans is still being investigated [114, 125-127]. 

 
The small intestine is the site of production for numerous hormones and regulatory 

factors secreted in response to nutrients passing through the lumen. Enteroendocrine cells, 

the secretory cells of the intestines, are located throughout the mucosa and are classified by 

their area of concentration and secretory products. Although they make up less than 1% of 

the total intestinal epithelial cell population, numerous enteroendocrine secretory products 

have been proposed to play a role in energy sensing and food intake in humans [128]. For 
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example, Glucose-dependent Insulinotropic Polypeptide (GIP) is a 42-amino acid peptide 

secreted from K enteroendocrine cells located primarily in the duodenum and jejunum. 

Formally known as gastric inhibitory peptide, early research proposed GIP as a satiety 

hormone due to purported effects to slow gastric emptying and inhibit gastric acid secretion 

[129-131]. However, these studies were conducted using supra-physiological concentrations 

of GIP and this function of GIP under normal circumstances is no longer supported [132]. 

Further research on this peptide demonstrated that normal GIP secretion was closely related 

to fat and carbohydrate absorption with downstream effects on insulin release [133-135]. 

This finding supported the potential of GIP to play an important role in NTS nutrient sensing 

during food intake. However, vagal afferent fibers do not appear to be activated by GIP and 

there is no evidence of GIP receptors on these nerves [136, 137]. While increased plasma 

concentrations of GIP have been shown to decrease insulin secretion and may have important 

effects on postprandial glucose utilization, there is little evidence to support GIP as an 

important signaling hormone for satiety or food intake.  

 
Eneteroendocrine I cells are also located in the duodenum and jejunum of the small 

intestine. These cells secrete cholecystokinin (CCK) primarily in response to ingested fat and 

proteins [138-140]. In humans, proCCK is cleaved by prohormone convertases resulting in 

the major circulating forms of CCK (CCK-58, CCK-33, CCK-22 and CCK-8) all of which 

are capable of activating CCK receptors located on vagal afferents (CCKR-1) and in the 

brain (CCKR-2) [141-145]. CCK signals in tandem with gastric distension through vagal 

afferents to decrease food intake. The anorexic effects of CCK were elucidated through a 

combination of CCK blocking experiments and experiments with exogenous CCK. 

Collectively, results from these studies showed that reduced meal size with CCK 
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administration was abolished and food intake increased when either CCK receptors are 

blocked or vagal signaling to the NTS is otherwise impeded [146-151]. CCK for the 

therapeutic treatment of obesity has been suggested, however experimental results are not 

encouraging. Chronic administration of CCK is has been shown to be ineffective in reducing 

long-term body weight. Animals who received exogenous CCK before the start of every meal 

compensated for decreases in meal size by increasing the number of meals per day [152]. 

Other studies that attempted to lower body weight through continuous administration of CCK 

were also ineffective possibly due to the peptide’s short half-life of 1-2 minutes [153, 154]. It 

is possible however, that CCK may play a role in long-term body weight regulation through 

signaling in the hypothalamus and interaction with adiposity signals [27, 155]. 

 
Peptide YY (PYY), named for the two tyrosine (Y) molecules on its carboxy-

terminus end, is a 36-amino acid peptide secreted by L cells in the distal ileum and large 

intestine. PYY contains the same PP-fold structural motif and binds to the same family of 

receptors as NPY (Y1, Y2, Y3, Y4 and Y5) [156, 157]. The downstream effects of PYY on 

food intake and body weight depend on the peptide form and location of administration. 

There are two bioactive forms of PYY: the intact peptide (PYY1-36) and PYY3-36, in which 

the two amino-terminal amino acids have been cleaved by dipeptidyl aminopeptidase IV 

(DPP 4) [158]. When injected directly into the brain, PYY1-36 has been shown to have 

preferential affinity for Y1 and Y5 receptors in the hypothalamus and has potent orexigenic 

effects similar to NPY [159-162]. Alternatively, exogenous administration of PYY3-36 has 

been shown to suppress food intake and promote weight loss in rodent and humans through 

activation of Y2 receptors [163-166]. This contradictory impact of PYY on appetite is due to 

differences in receptor effects within the hypothalamus. Y1 and Y5 receptors are stimulatory 
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of AgRP/NPY neurons while Y2 receptors are presynaptic autoinhibitory receptors for 

AgRP/NPY neurons [167-169]. The respective orexigenic and anorexigenic activities of 

PYY1-36 and PYY3-36 are also reflective of normal changes in plasma concentrations of each 

form with PYY1-36 predominating in the fasted state and PYY3-36 being more abundant post-

prandially [158].  

 
Glucagon-like peptide 1 (GLP-1) is also secreted by enteroendocrine L cells. GLP-1 

is derived from proglucagon, the parent molecule of a number of other hormones and 

regulatory factors such as glucagon, oxyntomodulin, GLP2, and glycetin [167]. GLP-1 

receptors (GLP1Rs) are expressed in in the gastrointestinal tract, pancreas, and vagal 

afferents indicating potential for GLP-1 to modulate food intake and glucose regulation. In 

the ARC of the hypothalamus, GLP1Rs are located primarily on POMC/CART neurons. In 

rats, GLP-1 administration in the brain resulted in substantial decrease in food intake with 

peripheral administration in rats and humans confirming the anorexic potential of GLP-1 

[170-173]. Though consistent, results from these studies are most likely not representative of 

gut produced GLP-1 impact on satiation.  Although GLP-1 plasma concentrations increase 

post-prandially, GLP-1 has a short half-life being rapidly degraded by DPP 4.  It is estimated 

that only 10-15% of secreted GLP-1 ends up in circulation and it is unlikely that small 

changes in plasma GLP-1 that occur under normal physiological conditions stimulate the 

changes on food intake seen in the aforementioned studies [174]. The physiological 

importance of GLP-1 on satiation is also questioned by research showing GLP1R deficient 

mice have normal food intake and body weight [175]. Therefore, the most important 

biological roles for GLP-1 are most likely its downstream effects as an incretin and its role in 

signaling for the enteric nervous system.  
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Peak plasma PYY and GLP-1 concentrations occur 1-2 hours after meal ingestion, 

long before the bulk of nutrients have reached ileum or large intestine [96, 176]. This pattern 

of secretion suggests the existence of non-nutritive stimulation of L cells through the enteric 

nervous system that relays nutrient information in the duodenum through vagal afferents to 

downstream parts of the gastrointestinal tract [177, 178]. While the enteric nervous system 

may be vital to initial PYY and GLP-1 secretion, L cells are highly responsive to 

macronutrient content of meals with carbohydrates, lipids and protein respectively eliciting 

increasingly larger PYY and GLP-1 responses [142, 162, 164, 179]. Vagal afferents in the 

ileum and large intestine express Y2 and GLP1R receptors providing a mechanism by which 

these peptides can provide feedback to the enteric nervous system completing the so called 

“ileal brake” loop. The majority of carbohydrates and protein are usually broken down and 

absorbed before reaching the ileum. If a significant concentration of nutrients reaches the 

ileum, nutritive stimulation of L cells increases PYY/GLP-1 secretion that in turn delays 

gastric emptying and slows gastrointestinal motility [180]. Slower gastric emptying lessens 

the digestive load on the upper small intestine allowing for increased absorptive efficiency. 

In turn, fewer nutrients reach the ileum, PYY/GLP-1 secretion is decreased and inhibition on 

gastric emptying is removed thus completing the loop [181-183].  

 
In addition to the aforementioned peptides, there are a number of other gut derived 

signals, including apolipoprotein A-IV (Apo-AIV), gastrin-relasing peptide (GRP), 

somatostatin, oxymtomodulin, and enterostatin, that have been reported to reduced meal size 

[83, 167].  Additionally, it has also been proposed that signals from the microbiota of the 

large intestine play a role in communicating between the gut and brain [184].  The numerous 
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overlapping signals produced within the gut create a complex regulatory system. In 

upcoming sections, the impacts of fiber on this system and resulting effects on appetite and 

food intake will be discussed.  

 
Non-homeostatic influences on appetite and food intake 

In addition to regulatory factors for homeostatic control of body weight, other 

physiological processes that integrate sensory perceptions and host of social and 

environmental factors also influence human eating behavior. One of the biggest motivators of 

food selection and meal size is the hedonic reward system. Neurological pathways 

throughout the brain gather sensory information about the taste as smell of food and connect 

that information to the secretions of opioids such as dopamine [185]. Palatability ratings 

increase for those foods that have a higher reward value. Highly palatable foods are often 

characterized by high fat or sugar content and increased energy density [186]. As a result of 

increased meal size and energy density, studies have shown increased energy intake with 

increased palatability in both animal and human models [187-189]. Sensory-specific satiety 

is important to the hedonic reward system as the pleasant responses to food ingested 

decreases the more that food is consumed [190, 191]. Numerous studies have shown that 

increased variety in the meal helps to limit dampening effects of sensory specific satiety 

leading to increased intake [192-194]. Interestingly, perceptions in variety are not limited to 

differences in food orosensory qualities. Changes in visual perception of calorie-matched 

foods have also been shown to increase intake [195, 196].  

 
Cultural and societal standards also have strong influences on food intake and body 

weight. Cultural norms influence food preferences, eating rate and expectations of 
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appropriate portion size. For example, portion sizes in restaurant and pre-packaged foods 

have increased dramatically in the U.S. and other western countries [197, 198]. Research has 

shown that larger portions lead to increased intake in both meals and snacks [199-202]. Meal 

size has also been shown to increase with increased social interaction, possibly as the result 

of social cues and increased meal duration [203]. Environmental factors impact meal 

initiation as much or more than biological factors. People eat when they are not hungry if the 

social setting dictates its appropriateness or don’t eat when they are hungry for reasons such 

as time constraints, lack of availability of food or self-restriction. Although discussed 

individually, social, hedonic and homeostatic influences on appetite occur simultaneously in 

free-living conditions. In appetite research, these factors are rarely studied together with two 

of the three categories being controlled for. For the research conducted in this paper, social 

and hedonic influences on appetite will be controlled for in an attempt to focus on the 

influence of fiber on homeostatic influences on appetite and food intake.  

 

Fiber Definition and Classification 

 
The term fiber was first used by Australian scientist Eben Hipsley in 1953 as a short 

hand description for the molecules that make up the plant cell wall. Plant cell walls are 

composed of carbohydrates such as cellulose, hemicellulose, and pectin, held together in 

complex structures along with lignin and phenolic acids. This structure-based definition of 

fiber was updated in the 1970s to include a human physiological component: resistance to 

enzymatic digestion [204, 205]. In normal carbohydrate metabolism, starches are broken 

down by alpha amylase, an α(1-4) glycoside hydrolase which is secreted by the pancreas and 

salivary glands in humans. This calcium dependent metalloenzyme acts at random locations 
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along long-chain polysaccharides yielding maltotriose, maltose, glucose, and limit dextrins 

from amylose and amylopectin in starches. These carbohydrate metabolites are further 

digested to monosaccharaides by isomaltase and disaccharidases then absorbed in the small 

intestine. Unlike digestible carbohydrates, fiber monomeric units are joined by β(1-4) 

glycosidic bonds which are not substrates for alpha amylase. As a result, fibers are able to 

pass through the early digestive tract undigested [206].  

 
Throughout the 20th century, one main goal of fiber research was to assess potential 

health benefits of consumption. In 2000, the American Association of Cereal Chemists 

(AACC) assessed the existing literature and concluded that three physiological effects of 

increased fiber consumption were well substantiated. These impacts were included in their 

official definition of fiber, which states that dietary fiber “promotes beneficial physiological 

effects including laxation, and/or blood cholesterol attenuation, and/or blood glucose 

attenuation” [207]. The impact of fiber on these endpoints was supported by numerous 

epidemiological and clinical trials where fiber was consumed from whole foods or isolated 

from foods where they naturally occur [208-211]. In addition to including health effects of 

fiber, the AACC 2000 definition also clarified information related to fiber digestibility to 

state that while resistant to enzymatic digestion, dietary fibers are partially or completely 

fermented in the large intestine. Fermentation is enzymatically-controlled, anaerobic 

breakdown of an energy-containing compound. In humans, this occurs in the large intestine 

through a symbiotic relationship with colonic bacteria [207, 212]. 

 
Adequate intake recommendations for dietary fiber intake are 38 g/day for men and 

25 g/day for women [213, 214]. However actual consumption is much lower at 18 and 15 
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g/day respectively for men and women according to the most recent NHANES data [215]. 

The low intake of natural high fiber foods relative to recommended levels created a strong 

interest in development of foods that contained added fiber. The definition of fiber continued 

to evolve as scientific advancements led to the development of synthetic, enzymatically 

resistant, carbohydrates. In 2001, the Institute of Medicine (IOM) proposed a separation of 

endogenous food fiber (dietary fiber) and fiber that had been isolated or synthesized 

(functional fiber) [216]. The motivation to distinguish the sources of fiber was based 

primarily on a desire to distinguish the health benefit differences between the two. Dietary 

fiber, as defined by the IOM, was correlated with lower risk of type 2 diabetes and 

cardiovascular disease [217-222]. However, because interventions were run with whole 

foods, it is difficult to distinguish a unique effect of fiber from an effect of high fiber foods 

where fiber content is usually associated with vitamins and minerals that also may impact the 

measured outcomes. Functional fibers on the other hand are studied in the absence of these 

confounding factors and present an opportunity to investigate the physiological role of fiber 

on its own. The proposed two-pronged IOM definition also requires that novel synthetic 

fibers be shown to have a physiological benefit to humans before being classified as 

functional fiber. This change represents a shift in the concept of fiber, such that its resistance 

to enzymatic digestion is secondary to its ability to impact human health.  

 
By the mid 2000’s, world-wide agencies attempting to define fiber generally fell into two 

camps: those focused on analytical methods of measuring fiber and those focused on 

physiological health benefits of fiber. This difference in approach was especially confusing 

for starch derived functional fibers such as resistant starch and resistant dextrins. Some 

analytical methods for measuring fiber eliminate all starches. As a result, starch derived 
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functional fibers were not recognized in some agency definitions of fiber [205, 223]. In an 

effort to standardize the definition and labeling of fiber globally, in 2009 the Codex 

Alimentarius Commission (CODEX) gave the following definition: Dietary fibre means 

carbohydrate polymers with 10 or more monomeric units, which are not hydrolysed by the 

endogenous enzymes in the small intestine of humans and belong to the following categories: 

1. Edible carbohydrate polymers natural occurring in the food as consumed 

2. Carbohydrate polymers, which have been obtained from food raw material by 

physical, enzymatic or chemical means and which have been shown to have a 

physiological effect of benefit to health as demonstrated by generally accepted 

scientific evidence to competent authorities 

3. Synthetic carbohydrate polymers, which have been shown to have a physiological 

effect of benefit to health as demonstrated by generally accepted scientific evidence to 

competent authorities 

 
The most notable change made by the CODEX from the IOM definition is to include 

non-endogenous sources under the heading of dietary fiber once they are shown to have 

health benefits in humans. Other changes include the limitation of the term fiber to 

“carbohydrate polymers”, although a footnote does extend the definition to include lignin and 

other compounds when associated with, but not isolated from, complexes of plant origin, and 

specification that polymers be at least 10 units in size. The size limitation was the result of 

solubility differences for smaller oligosaccharides that made them more difficult to 

accurately measure [205]. However, no digestive physiological differences exist and a 

second footnote leaves the decision to include non-digestible carbohydrates 3 to 9 units in 

length as dietary fiber up to national authorities [223]. Although the U.S. currently does not 
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have a formal definition of fiber, the Food and Drug Administration (FDA) is set to adopt the 

CODEX definition of fiber effective in 2016 [224]. 

 
The CODEX’s focus on health benefits for non-endogenous fiber sources presents a need 

for research to thoroughly investigate potential claims for novel, man-made fibers. While 

there may be benefits to disease risk, this dissertation will focus on the potential satiation 

effects of such fibers and their impact short-term energy intake. In order to more easily 

understand the various impacts of fiber on appetite, it is best to first subdivide fiber into 

meaningful categories. The most widely accepted classification of fiber is based on its 

solubility in water creating two main groups: insoluble and soluble fiber. This classification, 

however, is based on analytical methods of measuring fiber in foods and is not always 

descriptive of differences in physiological impact between fibers [225]. Insoluble fibers, for 

instance, vary greatly in the degree they are fermented in the colon and soluble fibers differ 

in their ability to change the viscosity of the digestive fluid. Furthermore, the impacts of 

soluble and insoluble fibers on human physiology are inconsistent within these classifications 

[226]. For these reasons, instead of discussing the impacts of soluble and insoluble fibers on 

appetite, fiber will be discussed in terms of their viscosity and ability to be fermented.  

 

Physiological Effects of Fiber 

 
Viscosity and gastric motility 

Fiber’s potential impact on appetite begins in the mouth. Many naturally occurring 

high fiber foods require increased chewing to create particle sizes small enough to swallow. 

This increased mastication increases oral processing time and may help to decrease caloric 
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intake by slowing consumption rate and increasing satiety hormones [227-229].  In addition 

to this mastication effect, some fibers increase the viscosity of chyme in the stomach and 

small intestine. Dynamic viscosity is defined as the resistance of a fluid to flow and is 

measured in pascal-seconds. Studies have shown that increased meal viscosity is associated 

with increased satiety and decreased energy intake [230-232]. Although a recent systematic 

review of short-term feeding studies did not support the theory that viscous fibers had 

enhanced satiety effects over other fiber types, changes in viscosity represents a potential 

mechanism through which fiber can influence appetite [233]. It is hypothesized that potential 

satiating effects of viscous fibers are mediated by physiological changes on the gut including 

increased gastric distension and decreased gastric emptying rate [234, 235].  

 
Gastric distension is one of the first satiation signals that occur during food intake. 

Chewing and swallowing activate mechanoreceptors in the mouth and pharynx, which elicit a 

vagal nerve reflex in the stomach to relax to accept the food bolus.  Initial reflexive 

relaxation is supported by adaptive relaxation in the stomach as the gastric reservoir fills to 

allow for storage and digestion of the bolus by gastric juices.  Distension in the reservoir 

stimulates contractions that move some of the bolus to the distal compartment, which 

functions in grinding and mixing of intragastric contents as well regulation of nutrient 

delivery to the duodedum. As chyme begins to fill the antrum, distention in this region of the 

stomach initiates inhibitory signals to the reservoir to promote relaxation and prolonged 

storage [236, 237]. As described earlier, sustained gastric distention is an important 

contributing signal for meal termination as mechanoreceptors in the stomach signal to brain 

via vagal nerve afferents to the NTS [102, 104].  
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Gastric emptying is the passage of chyme from the stomach to the small intestine and 

is regulated by contractions of the pyloric sphincter. The rate of gastric emptying differs for 

liquid and solid components of the gastric digesta. Liquids are emptied very quickly, 

followed by solid particles, which first must be sufficiently ground to smaller pieces before 

passing through the pyloric sphincter [236, 238]. The pylorus prevents the passage of 

particles greater than 2mm in diameter with larger particles spending more time in the 

stomach [239].  It stands to reason that the longer particles stay in the stomach, the greater 

impact they can have on gastric physiology. Studies have shown an inverse relationship 

between fiber particle size and rate of gastric emptying [240]. Fiber, therefore, can decrease 

gastric emptying rate by increasing particle sizes in the solid phase or by increasing the 

viscosity of the liquid phase.  

 
Increased viscosity of the liquid phase increases gastric emptying time by a number 

of mechanisms. First, viscous fluids are more difficult for muscle contractions to penetrate 

resulting in weakened propulsion and slower movement between gastric compartments and 

down the gastrointestinal tract. Decreased propulsion combined with an innate resistance to 

flow results in overall increased motility time [237]. Viscous fibers such as gums and pectins 

have been shown to slow gastric emptying rate of the liquid phase in pig models [241, 242] 

although these effects have not been consistently replicated in humans [243-245]. The 

magnitude and stability of viscosity change varies greatly with the structure, molecular 

weight and chemical composition of the fiber being studied [246, 247]. Inconsistencies in 

observed effect of fiber on gastric motility may be due in part to the stability of gel formation 

under the acidic conditions in the stomach. Acid stable gels have been shown to stay much 

longer in the stomach and delay gastric emptying more effectively than non-acid stable gels 
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[248, 249]. Acid stable gel formation may be key to slowed gastric emptying and increased 

gastric distention and may help to explain feelings of increased satiety in some [244, 250-

252] but not all [253] appetite studies using viscous fibers. 

 
Glycemic Control 

In addition to potential satiating effects, viscosity also alters nutrient digestion, 

absorption and subsequent hormone signaling in the small intestine. Viscous fibers form a gel 

matrix around undigested nutrients, which is more difficult for both pancreatic enzymes to 

penetrate and digested nutrients to dissolve out of. As a result, digestion and absorption occur 

more slowly and a greater concentration of nutrients reaches the distal small intestine 

increasing secretion of incretin hormones GIP and GLP-1 [246, 247]. GIP and GLP-1 have 

both been shown to stimulate insulin secretion through binding with their respective 

receptors on pancreatic β cells [254]. Furthermore, as described earlier, GLP-1 functions to 

slow gastric motility via the ileal brake loop thereby decreasing the rate at which 

carbohydrates are digested and absorbed into the blood. Ingestion of viscous fiber therefore 

potentially lowers plasma glucose concentrations through increased incretin secretion and 

decreased gastric motility. While some studies have confirmed an effect of viscous fiber on 

glycemic response [255, 256], others have found no response or overall decreases of plasma 

incretin concentrations [257, 258]. Depending on the dosage and the chemical properties of 

the viscous fiber used, decreased glucose absorption and increased incretion secretion are 

two mechanisms by which viscous fibers, more than non-viscous fibers may help to attenuate 

the glycemic response of a meal [259, 260]. 
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While viscous fibers may have a stronger impact on postprandial blood glucose 

concentrations, epidemiological data correlates non-viscous cereal fiber intake with a 

decrease in type 2 diabetes incidence [222, 261]. This correlation is seen even after the 

correction for potential confounders including body weight and antioxidant consumption. 

Non-viscous cereal fibers do not have the same physiological impacts on nutrient absorption 

and gastric motility as viscous fibers and thus a definite mechanism behind their potentially 

beneficial glycemic effects has not been elucidated [259, 260]. However, some proposed 

underlying mechanisms include impacts on overall insulin sensitivity [262, 263], 

fermentation product regulation of glucose production [264] and long-term changes in gut 

microbiota [265]. A more detailed explanation of the physiological effects of fiber 

fermentation will be discussed in upcoming sections.  

 
Fermentation 

One of the most well known qualities of fiber is its ability to be fermented. Unlike 

ruminants whose digestive physiology begins with fermentation, humans undergo post-

gastric fermentation [266]. While digestible carbohydrates are metabolized and mostly 

absorbed before leaving the small intestine, fiber polysaccharides remain intact as part of the 

chyme that passes through the ileum of the small intestine into the large intestine. In humans, 

the large intestine consists of four parts: the cecum, colon, rectum and anal canal. Chyme 

passes from the ileum and enters the cecum of the large intestine. Though in other species the 

cecum is robust and a highly integrated part of digestion, in humans it is very rudimentary 

and serves merely as a connecting point for the ileum and the appendix. Chyme then passes 

into the colon. The colon also consists of four major sections: the ascending colon, transverse 

colon, descending colon and sigmoid colon. In terms of functional division, the proximal 
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colon contains the ascending and transverse colon and the distal colon contains the 

descending and sigmoid colon [267, 268]. The proximal colon is highly populated with 

saccharolytic bacteria and receives the highest concentration of undigested polysaccharides. 

As a result, it is the site of the greatest carbohydrate fermentation and short-chain fatty acid 

(SCFA) production. Any remaining fibrous material in the chyme then passes to the distal 

colon. Due to a higher pH, the environment is more favorable for proteolytic bacteria rather 

than saccharolytic bacteria. The change in microbiotic composition coupled with a depleted 

substrate supply results in much lower carbohydrate fermentation and SCFA production 

[269, 270]. Any unfermented fibrous materials become a part of the feces in the rectum, 

passes through the anal canal and is expelled from the body. 

 
Although the population of saccharolytic bacteria present in the colon is highly 

diverse, three phyla, Bacteroidetes, Firmicutes, and Actinobacteria predominate [270, 271]. 

Though differing in end products, the fermentation process starts the same. First, fiber 

polysaccharides bind to the bacterial surface where they are hydrolyzed by bacterial enzymes 

to smaller oligosacchardies. These oligosaccharides are transported into the periplasm where 

they undergo further enzymatic degradation to yield monosaccharides, which are then 

transported into the bacterial cytoplasm [272].  Bacteria are able to metabolize these sugars 

for ATP generation via the Embden-Mayerhof-Parnas pathway and the pentose-phosphate 

pathway ultimately yielding pyruvate [269, 273]. Because colonic bacteria are anaerobic 

prokaryotes, they lack the enzymes and organelles necessary for cellular respiration. 

Fermentation is therefore an alternative mechanism to capture some of the remaining energy 

from the original carbohydrate substrate and SCFAs are the byproducts of this activity [269]. 

The degree of fermentation and type of SCFAs produced varies based on the substrate and 
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the particular bacteria doing the fermenting. For humans, the main fermentation end products 

are acetate, propionate and butyrate produced in a 60:20:20 ratio along with gasses such as 

carbon dioxide and hydrogen and expelled from the bacteria into the lumen of the colon [267, 

274, 275]. These end products are the basis for the symbiotic relationship that bacteria have 

with other microbiota in the colon and of course, the host organism.  

 
Colonic epithelial cells absorb SCFAs through a number of mechanism including 

passive diffusion, carrier mediated transport and active transport.  As indicated by their 

name, SCFAs do not have long, hydrophobic areas, which means they do not form 

aggregates in the digestive tract as long-chain fatty acids do. These smaller, more soluble 

SCFAs are rapidly absorbed, in part, through passive diffusion into the colonocyte [276]. 

Passive diffusion requires that SCFAs be in their protonated form in order to pass through the 

lipid bilayer. Under physiological conditions, it has been suggested that SCFAs exist 

primarily in their acid form as their pKa is lower than the pH of the colonic lumen [277]. 

However, this theory does not take into account the large influx of hydrogen ions near the 

apical membrane sustained by a number of ion exchange pumps that promotes protonation of 

SCFAs [278, 279]. It is therefore proposed, that passive diffusion accounts for more than half 

of SCFA absorption in the colon [280]. A second mechanism by which SCFAs are absorbed 

is through carrier-mediated exchange for bicarbonate with an as of yet unidentified antiporter 

[269]. Bicarbonate may serve a role in maintaining the pH at the mucosal epithelial surface 

and support mucous formation [281-283]. Finally, monocarboxylate transporters (MCTs) are 

also involved in SCFA absorption. There are over 15 isoforms in the human colon and 

function as proton-coupled, electroneutral cotransporters for SCFA anions. They are of 
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greater concentration in the distal colon and can also exist in a sodium-mediated form 

(SMCTs) [284, 285].  

 

Fiber Measurement and Effects on Satiety 

 
Short chain fatty acids and appetite 

Once absorbed, colonocytes readily metabolize SCFAs, especially butyrate and 

acetate for energy. In vitro studies show that up to 70% of colonocyte energy needs are met 

by SCFA oxidation. It is thought that colonocytes metabolize most if not all of the butyrate 

absorbed. Those SCFAs that escape digestion are transported out of the colonocyte and into 

portal circulation [269, 274]. Because the intracellular pH is much higher than the lumen of 

the colon, all SCFAs are thought to exist in their anion form. Therefore, there is very little 

passive diffusion across the basolateral membrane and transport is heavily reliant on MCT 

transporters [285]. From portal circulation, SCFAs are transported to the liver where any 

remaining butyrate, propionate and approximately 70% of acetate are absorbed and 

metabolized [280, 286]. Propionate is readily converted to succinyl CoA and enters the citric-

acid-cycle where it is further metabolized to oxaloacetate and used as a substrate for 

gluconeogenesis. Acetate is metabolized by hepatocytes for energy as well as used as a 

substrate for cholesterol and long-chain fatty acid production [287]. Acetate not absorbed by 

the liver are transported along with other trace SCFAs to other tissues such as muscle and 

adipose tissue where they are absorbed and metabolized. Though significantly less efficient 

than in other species, in humans, bacterial fermentation and subsequent SCFA metabolism 

may contribute 5-10% of daily energy [288].  
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SCFAs don’t just impact energy balance through direct metabolism. Research in the 

last decade has uncovered Free Fatty Acid Receptors (FFARs) that paint the picture of 

SCFAs as important signaling molecules for regulation of appetite, fatty acid metabolism and 

glucose metabolism. Formerly GPR43 and GPR41, FFAR2 and FFAR3 are G-protein 

coupled receptors that bind SCFAs such as acetate, propionate and butyrate. Both FFA2 and 

FFA3 are co-localized with enteroendocrine L-cells of the gastrointestinal tract [289, 290, 

291]. Increased plasma PYY and GLP-1 levels following fermentable fiber ingestion have 

been seen in many [292, 293-295], but not all studies [296], suggesting that SCFA stimulates 

release of these hormones from L cells.  

 
Outside the gut, it is thought that SCFAs play a more direct role in glucose and fatty 

acid metabolism through influence in adenosine monophosphate-activated protein kinase 

(AMPK) pathways. SCFAs have been shown to increase AMPK activity in liver, adipose and 

muscle tissue [297, 298]. Activation of AMPK begins a metabolic response that results in 

decreased fat storage in adipose tissue and increased fatty acid oxidation and glucose 

oxidation in other tissues [269, 299]. SCFAs have also been showed to increase leptin 

expression via a FFA2 – dependent pathway [300, 301]. In addition to receptor-mediated 

impacts on satiety and metabolism, acetate may itself act as an anorectic signal in the brain.  

Studies have shown that acetate crosses the blood-brain barrier where it provides energy to 

glial cells [302]. Recent research has also that acetate preferentially accumulates in the 

hypothalamus where it is rapidly converted to acetyl-CoA and enters the TCA cycle. 

Downstream impacts on AMPK and molonyl-CoA concentration are associated with 

increased expression of POMC and suppression of both NPY and AgRP [303].  
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Fermentation measurement 

Due to the inaccessibility of the site of fermentation, direct measurement of SCFA 

production is extremely difficult. Most in vivo research has used stable and radioisotope 

techniques in animal models (pigs, cows and rats) to assess production rates of specific 

SCFAs [304-306]. One limitation to these studies is the questionable relatability of animal 

model SCFA production to humans due to differences in gastrointestinal physiology. A 

second limitation is that by design, these studies require the limitation of response 

measurement to one or two specific SCFAs which may not capture the full range of SCFAs 

produced from a given food source.  Finally, in vivo measurements of SCFA production are 

highly invasive, time consuming and expensive and are therefore rarely done in in humans 

[307]. In vitro techniques using human fecal inoculum show significant variation in SCFA 

production based on the fiber source utilized [308, 309]. While these data provide some 

indication on the relative fermentability of various fibers, they are not necessarily 

representative of what happens in vivo as the processes of isolating microbiota for these 

studies alters the diversity of from that what is naturally seen. Additionally, fermentation end 

products accumulate during in vitro studies and may reduce the rate of production over time. 

This artificial reduction in SCFA production may not be representative in vivo processes 

where continuous absorption occurs [269].  

 
Indirect measurement of SCFAs in blood and urine are common, however due to the 

extremely low concentration of SCFAs in these biological fluids, complicated extraction 

techniques are required to accurately analyze the samples. Extraction and subsequent analysis 

requires specific equipment and expertise making the analysis expensive and highly sensitive 

to variation and inaccuracies resulting from novice analyzers [307, 310]. Additionally, the 
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value of such data is questionable given that most of the produced SCFAs would have been 

metabolized by other organs before reaching the blood or being expelled in the urine. SCFA 

concentrations can also be measured in the feces and data used as an indicator of colonic 

fermentation. However, it is estimated that only 5-10% of produced SCFA are expelled in the 

feces and that changes in fecal concentration of SCFA may be more indicative of changes in 

absorption, rather than changes in production [311]. 

 
An alternative approach to direct measurement of SCFAs is to measure other 

byproducts of fermentation such as gasses. As described earlier, hydrogen, carbon dioxide 

and methane are also produced by colonic fermentation of fiber. Archaea and other phyla of 

bacteria use carbon dioxide and hydrogen as substrates for their own metabolism with the 

excess gasses being excreted in the breath or in flatus [269]. Depending on the microbiota 

present, some individuals may not produce substantial concentrations of methane. 

Additionally, methane concentrations may not be sensitive to changes in meal size or 

composition [312, 313]. Carbon dioxide concentrations in the breath are of course 

confounded by non-colonic fermentation sources. Hydrogen, therefore, is the best candidate 

for a fermentation proxy in expired air. Although some hydrogen is lost through other routes, 

the only source of hydrogen gas in the breath can be from bacterial fermentation in the 

bowel. Additionally, breath hydrogen concentration has been shown to correlate well with 

the hydrogen concentration produced in the colon [314, 315]. In a practical sense, the test is 

non-invasive, participants can collect the samples themselves and samples can be stored for 

up to two weeks at room temperature. Furthermore, the biochemical analysis is simple, 

reliable, and inexpensive making it a good choice for large, human studies [316].  
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Caloric dilution 

In population studies, low fiber diets have been associated with increased incidence 

of chronic disease including obesity [317-319]. Likewise, high fiber diets have been 

associated with lower waist circumference and BMI in both children and adults [320-323]. 

Reviews of interventions studies on the effects of fiber on weight loss have found improved 

weight loss in high fiber vs. low fiber intervention [235, 324]. This trend is true for whole 

food and supplemental fiber interventions investigating both viscous and non-viscous, 

fermentable fibers. In addition to previously described impacts on satiety, fiber is thought to 

decrease energy intake and aid in weight management through energy dilution of 

carbohydrate based foods.  

 
Short-term feeding studies have shown that people are generally more sensitive to the 

weight or volume of food consumed and not the amount of energy consumed [201, 325, 326]. 

Because fiber is not readily digested, the overall energy density of the food is diluted with 

increased fiber content. Consumption of a consistent weight of a lower energy dense food 

results in decreased overall energy intake and may promote weight loss. Due to energy losses 

associated with fermentation, fiber does not provide the 4kcal/g of energy expected from 

readily digestible carbohydrates. However, as described earlier, SCFA metabolism resulting 

from fiber fermentation means that some energy is recovered from fiber and in some 

respects, fiber is in fact metabolized. Research determining the caloric value for different 

fibers shows a typical range of 0 -3 kcal/g for fiber depending on the chemical composition 

and properties of the fiber tested [327, 328]. It is estimated that non-viscous, fermentable 

fibers such as resistant starch and resistant dextrin provide about 1.5-2.0 kcal/g and are 

therefore likely to have meaningful caloric dilution effects depending on dosage [328].  
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Appetite Measurement 

 
Although the concept of appetite is intuitive and simple it is actually the sum of three 

distinct components: hunger, satiation and satiety. Hunger is the motivation to eat and is 

often measured in sensory terms through cognitive reflection by participants. Once food 

intake is initiated, satiation determines meal size and duration and is measured by collecting 

data on caloric intake. After cessation of an eating event, satiety is defined as the period 

before the next meal starts [329]. In its purest form, satiety can be measured in terms of the 

amount of time taken between meals; however, in research the timing of meals is often set by 

the researcher. Decreased hunger and changes in biomarkers of appetite are associated with 

increased satiety and can be used as a satiety proxy in research where meal times are fixed.  

 
Questionnaires 

Appetite research is heavily reliant on human introspection about habits and sensory 

information related to food intake. Questionnaires are an important tool for gathering and 

organizing this information in meaningful ways. Two common approaches to the design of 

appetite questionnaires are fixed point and visual analogue scales (VAS). Fixed-point scales 

come in a variety of forms including Likert-type scales (strongly agree/disagree), frequency 

(times/week, never, sometimes, often) and preference (e.g. palatability on a scale of 1-10). 

Fixed-point scales are excellent screening tools as they allow for quick categorization of 

potential participants concerning normal eating patterns, food preferences and motivations to 

eat [330, 331]. The points on such questionnaires are often ordinal in nature, though it is 

difficult to quantify the meaning of category intervals [332]. Additionally, fixed-point scales 
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may not be sensitive to acute changes in sensory perception as, with repeated measurement in 

a short time period, it is easier for participants to remember earlier responses.  

 
VAS questionnaires use a 100 or 150mm line anchored with extremes of the 

sensation being measured (e.g. 0mm = not hungry at all and 100 mm = as hungry as I have 

ever felt). Participants are instructed to mark the line that corresponds to their current state. 

For analysis, the response is quantified by measuring the distance of the participants mark 

from the left end of the line [333]. Any number of appetite related questions can be asked 

using VAS; however future food intake seems to be most highly correlated with the 

following questions: How hungry do you feel right now?  How full do you feel right now? 

What is your desire to eat right now?  What is your prospective consumption right now? 

[334, 335].  Questions about preoccupation with food and desire to eat foods with specific 

sensory qualities (i.e salty, fatty, sweet) help to provide a more thorough view of appetite 

changes, however their sensitivity is highly dependent on participants’ ability to distinguish 

those perceptions from similarly phrased questions. Thirst ratings are also commonly 

collected to help the participant separate what is thought to be two concurrent sensations 

[336]. Overall VAS is an easy tool to capture changes in appetite over time though the ability 

to separate out treatment effects may be dampened by subjects’ reluctance to make full use of 

the scale (either sticking to or staying away from extremes) which has been shown to be 

more of a problem from electronic VAS systems then traditional pen and paper models [337]. 

 
Biomarkers of satiation and satiety 

There are two main approaches to measuring biomarkers of satiation and satiety: 

biomarkers in the brain and biomarkers in the periphery. Measurement of central nervous 
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system biomarkers of appetite is commonly done through positron emission tomography 

(PET) or function magnetic resonance imaging (fMRI). In PET, intravenous 15O is 

administered and used to measure cerebral blood flow. Sites of brain activity have increased 

blood flow and will therefore uptake more 15O then surrounding areas and emit more gamma 

rays for detection [338]. In fMRI, the subject is placed within a strong magnetic field and 

radiofrequency pulses are applied to excite hydrogen atoms throughout the brain. When these 

excited protons return to their original energy state, they emit radiowaves for detection. 

Increased blood flow in activated brain areas decreases the concentration of deoxygenated 

hemoglobin in these areas. Deoxygenated hemoglobin locally distorts the magnetic field and 

affects the relaxation process of activated hydrogen atoms in the brain. Less distortion results 

in small increases in the fMRI signal [339]. Both PET and fMRI are geared towards 

measuring hedonic appetite and sensory-specific satiety and have indicated differences 

between lean and obese subjects relative to these measures [340]. While suitable for 

hypothesis building, these scans cannot be used to establish a causal relationship between 

stimulus and response due to the indirect nature of the data. Use of PET and fMRI are also 

limited by the high cost, specialized equipment and training needed to administer and analyze 

the data. Furthermore, due to the extreme physical nature of these techniques (participants 

must be lying down with their head restrained) the types of manipulations that can be 

measured are highly restricted and results may not have much external validity [333].  

  
Changes in plasma concentration of gut peptides and glycemic response are the main 

peripheral biomarkers of appetite and physiological control of meal size. Plasma 

concentration of hormones such as CCK, PYY, ghrelin, insulin and GLP-1 are commonly 

quantified using radioimmunoassay (RIA) techniques. In RIAs, a sample of human plasma 
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containing the molecule of interest is incubated with a known quantity of antibody for that 

molecule. A radioactive version of the target molecule, known as the tracer, is then added to 

the mixture. Unbound antibody binds to the tracer and forms a pellet whose radioactivity can 

be measured using a gamma counter. There is an inverse relationship between the 

radioactivity measured and the concentration of the target molecule in the original sample. A 

binding curve is established for each assay using known quantities of the target molecule. 

The concentration of the target molecule in the original sample is quantified by plotting its 

radioactivity on the binding curve [341, 342]. Although the method is theoretically simple, 

RIAs are not without their limitations. Most importantly, RIAs are an indirect measure of 

concentration and changes in radioactivity counts are not solely an effect of changes in 

concentration of the target molecule. Non-specific interference with antigen-antibody binding 

and quality control of reaction ingredients both influence final readings and will be 

misinterpreted as changes in hormone concentration. These effects are of particular 

importance for target molecules whose physiological serum concentrations fall within a tight 

range [343]. Secondly, it is important to keep in mind that plasma concentrations of these 

hormones may not accurately reflect the local concentrations in the gut. Results investigating 

the correlation between plasma concentration of gut hormones and appetite are mixed [344, 

345]. 

 
Food intake 

In research, food intake is measured by two main methods: direct measurement and 

self-report. Direct measurement of food intake is possible when participants are kept in the 

laboratory and food selections are limited by the researcher. By weighing portioned food 

before and after consumption, the researcher is able to measure the weight of food consumed 
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during the meal and use that information to calculate caloric intake. While highly repeatable 

and accurate, in laboratory food consumption may not have high external validity [346, 347]. 

The amount of calories consumed at a given meal in free-living conditions is influenced by 

food choice, meal timing and social context. These environmental cues are often purposefully 

controlled in research; therefore food intake changes seen in the lab may not represent 

intervention effects in a free-living environment.  

 
There are a number of techniques to collect food intake data when participants are not 

in the laboratory. Among the most commonly assessment tools used are 24-hour diet recalls, 

food frequency questionnaires and diet diaries. Inaccuracies in self-reporting of food intake 

have been widely reported [348-350] with particular emphasis on underreporting. The ability 

for participants to provide an accurate accounting of intake is heavily reliant on each 

individual’s knowledge about the food being consumed (difficulty with restaurant and 

homemade recipes not prepared by the participant), familiarity with estimating portion sizes 

(a piece of cake, a slice of pizza), and completeness with reporting all intake details (added 

oils in cooking or use of condiments). Research into the nature of reporting inaccuracies has 

revealed gender and body weight differences in reporting accuracy with women 

underreporting more than men and overweight and obese individuals underreporting more 

than lean individuals [351, 352]. Additionally, other studies have shown that the quality of 

reporting improves with training, repeated measurement and decreased time delay between 

consumption and recording [334, 353]. Despite this information, there are still difficulties in 

assuring the quality of food intake data in research studies. Furthermore, collection of food 

intake data without information about the environmental context in which it occurred 



www.manaraa.com

47 

 

complicates interpretation of the data and is a major confounder in many short-term appetite 

studies.    

Overall Hypothesis 

 
The overarching goal of this research is to explore the relationship between fiber 

consumption, appetite and food intake in healthy adults to provide a mechanism to support 

epidemiological correlations with lower body weight. A series of experiments were 

conducted to test the following hypotheses concerning non-viscous, fermentable fibers 

consumed as part of a mixed meal: 

(1) RS4/resistant dextrin consumption promotes satiation and decreases ad libitum food 

intake at the next meal and lower intake over a 24-hour period. 

(2) RS4/resistant dextrin consumption promotes postprandial satiety as measured by 

subjective appetite ratings. 

(3) RS4/resistant dextrin fermentation modulates satiety and satiation through changes in 

plasma biomarkers of appetite. 

As described earlier, fiber replacement of rapidly digestible carbohydrate also has the 

potential to change glycemic response to test foods. Therefore, another objective of the 

current research is to observe the effect of resistant starch/dextrin consumption on post-

prandial glucose and insulin responses. 
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Abstract 

 
Purpose. The effect of replacing wheat flour with resistant wheat starch in a breakfast 

meal was investigated in this randomized, cross-over design. Methods. Following an 

overnight fast, 27 healthy adults (aged 23±2 years with a BMI of 23.0±3.0 kg/m2) consumed 

standard muffins or muffins where 40% of the wheat flour was replaced with resistant wheat 

starch. Appetite questionnaires and plasma samples were collected before the test meal and at 

ten time points following meal consumption. An ad libitum lunch meal was provided 240 

minutes after breakfast, and the amount eaten recorded. Food intake was measured over the 

remainder of the day using a diet diary and appetite was measured hourly using an appetite 

questionnaire. Plasma was analyzed for markers of satiety and glycemic response. Results. 

Replacing wheat flour with resistant wheat starch reduced plasma insulin (p<0.05) but had no 

effect on plasma concentration of glucose CCK, GLP or PYY concentration (p>0.05). 

Moreover, there was no effect on appetite ratings, energy consumption at the lunch meal 

(p>0.05). Total daily energy intake (including the breakfast meal) was reduced by 179 kcal 



www.manaraa.com

83 

 

when participants consumed the resistant starch muffins for breakfast (p=0.05). Conclusion.  

Results indicate that replacing wheat flour with resistant starch decreases plasma insulin 

concentration and reduces energy intake over a 24 hour period.  

 

Keywords: Dietary Fiber, Fibersym, Appetite, Food Intake 

 

Introduction 

 
The increase in the number of overweight and obese individuals is a leading public 

health concern as these conditions are associated with an increased risk of chronic disease [1-

4].  The recent and rapid increase in the number of overweight and obese people suggests 

that environmental changes are a key etiological factor.  Population studies indicate that a 

low-fiber diet is a risk factor for weight gain [5-7].  Consumption of dietary fiber is currently 

below recommended levels in many countries and this may contribute to the 

overweight/obesity epidemic [8-9].  Increasing the amount of dietary fiber may be a useful 

dietary strategy to reduce the number of overweight and obese individuals.  However, public 

health efforts to increase fiber consumption have only had limited success [10-11].  A 

different approach to increasing fiber consumption is to add functional fibers, such as 

resistant starch to frequently consumed foods. 

 
Resistant starch (RS) is a starch that is not digested in the small intestine and passes 

into the colon to be fermented by the microbiota [12]. There are five classifications of RS. 

RS1 is physically inaccessible to digestion and found in whole grains, seeds and legumes. 

RS2 is innately resistant, granular type found in high amylose corn and unripe bananas. RS3 
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is retrograde starch that becomes resistant through the cooking and cooling process. Finally 

RS4 is chemically modified to create structures that are resistant to digestion [13-14].  A 

further category of resistant starch, RS5, which is a starch-lipid complex has also been 

proposed [15].  Studies indicate that RS provides fewer calories per gram than rapidly 

digestible starch [16].   

 
Resistant starch flours have been developed that can replace flour in commonly eaten 

products.  Replacing rapidly digestible starch (RDS) with RS would reduce the caloric 

content of a meal that could result in weight loss due to an energy dilution effect.  However, 

it is not clear if the reduction in energy intake would elicit a compensatory appetite response.  

Several gut derived hormones that are related to feelings of satiety are secreted in response to 

nutrients in the small intestine [17].  Consequently, a reduction in available carbohydrates 

would presumably reduce the stimulation of some satiety-related peptides resulting in a 

reduced appetitive response leading to a compensatory response where individuals consume 

more at the next meal.  On the other hand, it has been proposed that humans eat by weight 

[18-19].  So, maintaining the weight of the food but reducing the energy content would lead 

to lower overall energy intake.   

 
While RS is not digested and absorbed in the small intestine it may be fermented in 

the colon to produce short-chain fatty acids (SCFA) [12].  Emerging evidence from cell 

models indicates that SCFA can stimulate the secretion of the putative satiety hormones 

GLP-1 and PYY from colonic cells [20-22].   If this effect were to hold in humans this may 

provide a mechanism for RS to promote satiety although the effect may only become 

apparent several hours following consumption.  Short term feeding studies investigating RS2 
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and RS3 type starches have found beneficial effects on glycemic response, but weak or no 

effect on subjective appetite or short term food intake [23-25]. Studies using RS4 type 

starches, however, have shown greater glucose lowering capacity [26-28]. However, there is 

little known about the effects of RS4 on appetite and food intake in humans. 

 
The primary aim of this present study was to test the effect of a breakfast meal 

containing 26g fiber from RS4 type resistant starch on same day caloric intake. Additionally, 

impacts on subjective appetite, biomarkers of appetites and glycemic response were also 

measured. We hypothesized that participants consuming resistant starch would have a 

reduced caloric intake over a single day due to increased satiety and that the glycemic 

response would also be muted. 

 

Methods 

 
Potential participants were invited to attend a screening session where they completed 

a questionnaire that posed questions about their general health and dietary habits.  Their 

height and weight were measured to determine if they met the study inclusion/exclusion 

criteria.  Inclusion criteria were: body mass index (BMI) between 18.5 – 29.9 kg/m2, aged 

between 18-35 years, regular breakfast consumers (>5 days each week). The exclusion 

criteria were: not weight stable (> 3kg weight change in previous 3 months), use/used 

tobacco products, had the presence of acute or chronic illness or were restrained eaters (>13 

on the restraint section of the three-factor eating questionnaire) [29]. During the screening 

session, potential participants also tasted samples of all test foods to be used in the study and 

to rate their palatability. Participants were excluded from study participation if their rating for 
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any test food was less than 6 on a 9 point scale. The protocol was approved by the Iowa State 

University Institutional Review Board and all participants signed an informed consent form 

before being enrolled in the study. 

 
Protocol 

This study used a single-blind, cross-over design and randomized participants to 

treatment order. Participants were asked to report to the laboratory on two separate occasion 

separated by at least one week. The day before each test session, participants were asked to 

refrain from alcohol consumption and strenuous exercise. They were also asked to refrain 

from drinking caffeinated beverages for 12 hours before the test session and to not eat or 

drink anything except water starting at 10:00 pm the night before the test session.  

Participants were asked to arrive at the Nutrition Wellness Research Center (NWRC) at 8:00 

am the following morning. At the start of the test session, an indwelling catheter was placed 

into the participant’s non-dominant arm by the study nurse, and the participant allowed to 

rest for 30 minutes to acclimatize to the catheter. A baseline blood sample was collected and 

participants were asked to complete a baseline appetite questionnaire. The participant was 

then provided with a breakfast meal of muffins and orange juice.   

 
The test muffins were either control made with all purpose flour or resistant starch 

(RS) muffins containing Fibersym® flour. Participants were asked to eat and drink all food 

and beverage provided within 15 minutes. After the breakfast meal, participants completed 

an appetite questionnaire and another blood sample was collected (t=0). Over the next 4 

hours, blood samples were collected and appetite questionnaires completed at regular 

intervals (t = 0+15, 30, 45, 60, 90, 120, 150, 180 and 240 minutes). After the final blood 
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sample was collected the indwelling catheter was removed from the participants arm and 

they were allowed to rest for five minutes before being served an ad libitum lunch meal. The 

lunch meal was weighed without the participant’s knowledge before and after consumption 

and the amount eaten recorded. After finishing lunch, participants were allowed to leave the 

laboratory. They were asked to complete hourly appetite questionnaires and to keep a log of 

all food and beverages consumed for the remainder of the day. Data from the diet diaries was 

analyzed using Nutritionist Pro™ Diet Analysis Software (version 2.1.13; First DataBank, 

San Bruno, CA) 

 
Test foods and beverages 

The test breakfast used in this study included Tropicana® orange juice (PepsiCo, 

Purchase, NY) and in house made breakfast muffins. The control recipe for the muffins 

included all-purpose flour (Gold Medal, General Mills Inc., Minneapolis, MN) eggs (Great 

Value, Wal-Mart Stores Inc., Bentonville, AR), whole milk (Great Value), granulated white 

sugar (California & Hawaii Sugar Company, Crockett, CA), canola oil (Great Value), baking 

powder and salt. For the RS muffins, 40% by weight of the all-purpose flour was replaced 

with Fibersym® flour. Egg whites were also added to the RS batter to match the protein and 

fat content of the control meal.  In order to keep the fiber dosage consistent, participants all 

received three muffins for breakfast. Each RS muffin contained 8.7g fiber for a total dosage 

of 26g in the breakfast meal.  

 
Including the beverage, the control breakfast provided 777 kcal (16g protein, 122g 

available carbohydrate, 24g fat, 2g fiber). The resistant starch breakfast provided 693 kcal 

(16g protein, 102g available carbohydrate, 24g fat, 26g fiber). For the ad libitum lunch meal, 
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participants were served a meal of pasta and tomato sauce (Barilla Group, Parma, Italy) with 

shredded parmesan cheese (Kraft Food Groups Inc, Northfield Il) and asked to eat until 

comfortably full. 

 
Subjective appetite measurements 

Subjective appetite was measured using a standard appetite questionnaire [30] that 

posed the following questions:  How hungry do you feel right now?  How full do you feel 

right now?  What is your desire to eat right now?  What is your prospective consumption 

right now? How thirsty are you right now?  Responses were measured using a visual 

analogue scale anchored with opposing statements at each end (e.g. not hungry at all or as 

hungry as I have ever felt) stored on a PalmPilot with a time and date stamp to check for 

protocol compliance. For data collected outside the laboratory only time-points where 75% 

of the participants responded within 10 minutes of the correct time were used in the analysis.   

 
Glucose and hormone analysis 

Blood was drawn into 4ml EDTA-coated vacutainer tubes, mixed with aprotinin, 

centrifuged, then divided into aliquots before being stored at -80°C for further analysis.  

Plasma samples were assayed for glucose using a biochemical analyzer (YSI Life Sciences, 

Model 2700 select) while all other analyses (insulin, GLP-1, PYY3-36, ghrelin and CCK-8) 

were completed using established radioimmunoassay (RIA) procedures [31-32]. Plasma 

samples were ethanol extracted [33] prior to analysis for GLP-1, CCK-8 and PYY3-36. All 

samples were run in duplicate and all samples from a given participant were analyzed within 

the same batch. Insulin antibodies and tracers were made in Dr Hsu’s laboratory. All other 

125I-Tracers used were purchased from PerkinElmer (Waltham, MA). Ghrelin analysis was 
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done using T-4747 (Bachem, Bubendorf, Sui) antibodies. Antibodies for PYY3-36 and GLP-1 

were purchased from Bachem (T-4090 & T-4056) while CCK-8 antibody C2581 was 

purchased from Sigma Aldrich (St. Louis, MO).  Detection limits and coefficient of 

variations (CV) for each of the RIA measured hormones are as follows: Insulin: 3.1 – 400 

µU, interassay CV 8%, intra-assay CV 7%; Ghrelin: 50 – 1600 pg/mL, interassay CV 11%, 

intra-assay CV 7%; GLP-1: 3.6 – 500pg/mL, inter-assay CV 10%, intra-assay CV 8%, PYY3-

36: 5 – 640 pg/mL, inter-assay CV 8%, intra-assay CV 3%, CCK-8: 0.6 – 80pg/mL, 

interassay CV 10%, intra-assay CV 9%. 

 
Statistical analysis 

All data is show as means ± standard deviations.  Area under the curve (AUC) for 

blood responses and subjective appetite was calculated using the trapezoid method [34]. 

Treatment differences for each outcome measured were assessed using a one-way, repeated 

measures ANOVA.  Statistical analysis was conducted using SPSS for Windows or Mac 

(version 16.0; SPSS, Chicago, IL, USA) with statistical significance set at p < 0.05, two-

tailed.  

 

Results 

 
Participant demographics 

Thirty-one participants were randomized to the study. Four participants (3 male and 1 

female) dropped from the study due to schedule conflicts. Twenty-seven participants, 12 

female and 15 male, completed the study. The participant’s mean age was 23 ± 3 years and 

mean BMI was 23.45 ± 2.4 kg/m2. 
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Blood measures 

Figure 1 shows time response and AUC data for glucose and all hormones assessed 

for the study. Each measure demonstrated the expected post-prandial responses following 

breakfast consumption with decreased ghrelin and increases in all other measures. Statistical 

analysis of results revealed lower insulin following RS consumption (p <0.05). No other 

statistically significant treatment effect was found (p > 0.05).  F-values for non-significant 

data are as follows: glucose (F(1, 26) = 3.43; p>0.05), GLP-1 (F(1, 26) = 0.077; p>0.05),  

ghrelin (F(1, 26) = 2.272; p>0.05), CCK-8 (F(1, 26) =  0.005;p>0.05) and PYY3-36 (F(1, 26) 

= 0.073; p>0.05). 

 
Subjective appetite 

Figure 2 shows time response and AUC data for hunger, fullness, desire to eat and 

prospective consumption. There was a no treatment effect observed for any subjective 

appetite measures (data not shown for thirst). F-values for non-significant data are as follows: 

hunger (F(1, 26) = 0.119; p>0.05), fullness (F(1, 26) = 0.027; p>0.05),  desire to eat (F(1, 26) 

= 0.332; p>0.05), prospective consumption (F(1, 26) =0.023;p>0.05) and thirst (F(1, 26) = 

0.002; p>0.05). 

 
Food intake 

Before analysis, food intake data was normalized by taking the natural log. Table 1 

shows mean intakes by treatment along with F and p values for normalized data. Food intake 

measures consisted of in laboratory, breakfast, ad libitum lunch intake and evening food 

intake measured from participant diet diaries. There was no statistically significant difference 

in lunch intake or food intake over the remainder of the test day.  However, when the 
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breakfast meal was included in the analysis energy intake was lower on the RS test day (p = 

0.05).   

 

Discussion 

 
The results of this study showed that replacing RDS with RS in muffins resulted in 

reduced energy intake over the test day.  This reduction in energy intake did not result in a 

compensatory appetite response and there was no statistically significant effect on several 

satiety related hormones in the four hours following consumption of the test meal.  There was 

a reduction in plasma insulin but no effect on plasma glucose.  However, it is not clear if this 

effect would persist over a longer period of time.  Longer-term studies to determine the effect 

of resistant starch on body weight are required. 

 
In this present study, we did not observe a treatment effect on appetite ratings in the 

four hours post-consumption of resistant starch possibly due to the high satiety value of the 

vehicle used. In an effort to keep the fiber dosage consistent, all participants were asked to 

consume the same quantity of food regardless of body weight or BMI. Hunger, desire to eat, 

and prospective consumption ratings for the control breakfast were reduced to 45% of 

baseline measures for the first three hours after eating. This was coupled with more than a 

five-fold increase in fullness ratings over the same time period. The large magnitude and 

persistence of increased satiety for the control meal may have masked any potential satiating 

effects of the resistant starch meal resulting in no treatment differences in subjective appetite 

ratings or satiety hormones. 
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Although there was no effect of treatment on the amount eaten at lunch or intake for 

the remainder of the test day, overall daily energy intake (including breakfast) was lower on 

the day that the resistant starch breakfast was eaten. This indicates that the reduction in the 

energy content of the muffins caused by replacing rapidly digestible starch with resistant 

starch was not compensated for by eating more at subsequent meals. This finding is 

interesting as it provides a potential mechanism to explain population studies which show 

that high fiber consumption is associated with decreased BMI and body weight [35-37]. Also 

it provides evidence against complete caloric compensation, which suggests that replacing 

foods with low-calorie versions will result in the missing calories being consumed later in the 

day [38-39]. While the breakfast meals differed by over 80kcal, intake at the lunch meal was 

nearly identical. However there was over 100kcal difference between treatments after 

participants left the laboratory with participants eating less on days when the resistant starch 

muffins were consumed. The decreased food intake from diet diaries may be due to in part to 

physiological changes resulting from colonic fermentation of resistant starch [40-41]. 

However, future studies would be needed to elicit exact mechanism behind this observed 

effect.  

 
This study found lower plasma insulin following RS consumption, but there was no 

effect on plasma glucose concentration. These results are broadly in line with those reported 

by Bodinham et al [26] but conflict with other studies that have found replacing RDS with 

RS reduces plasma insulin and glucose [24, 42].  In this present study the available 

carbohydrate was lower in the RS muffins than the RDS muffins although the amount of 

available carbohydrate was relatively high in both meals.  Differences in the type of foods 
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used, the type or dose of resistant starch used or the test food used to provide the RS may 

also explain the different results.    

 
This study has a number of limitations that must be considered when interpreting the 

data. First the caloric value for the resistant starch breakfast meal is based on manufacturer 

specifications for Fibersym® which ignores any calories due to insoluble fiber content [13]. 

It is estimated that non-viscous, fermentable fibers such as resistant starch provide 1.5-2.0 

kcal/g as a result of colonic fermentation and subsequent short chain fatty acid production 

and metabolism [16]. It is likely that the caloric value for the resistant starch breakfast meal 

is higher than the reported value. Secondly, the observed reduction in total daily caloric 

consumption is also dependent on self-reporting of food intake from diet diaries. The 

accuracy of self-reported diet diary intake has long been questioned, with error rates of 20% 

and greater being estimated [43-45]. However, diet diaries from this study were checked for 

validity using established methods [46] and no trends in over or under reporting of caloric 

intake were observed. Finally, this was a single dose, single day feeding study and results 

cannot be extrapolated to conclude that RS would have long-term effects on body weight. 

Future research should be conducted to elucidate physiological mechanisms behind the 

potential satiating abilities of RS and to assess the long-term effects of RS on energy intake 

and body weight.  
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Fig. 1 Plasma hormone responses for insulin (a), glucose (b), GLP-1 (c), PYY3-36 (d), CCK-8 (e), and ghrelin (f) 

measured from baseline through 240 minutes post consumption of a breakfast meal containing 0 g (solid line) or 24g 

(squares) of resistant starch.  * Indicates a statistically significant treatment difference (p < 0.05). 
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Fig. 2 VAS scores of hunger (a), fullness (b), desire to eat (c), and prospective consumption (d) rated from baseline 

through 240 minutes post consumption of a breakfast meal containing 0 g (solid line) or 24g (dashed line) of resistant 

starch. There was no statistically significant treatment differences observed (p > 0.05). 
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Table 1 Food Intake Data – Means (kCal) ± SE 

Breakfast Meal Lunch Diet Diary Total (Including 
Breakfast 

Control (2g fiber, 777kcal) 752 ± 63 1418 ± 119 2947 ± 152 

Resistant Starch (26g fiber, 693kcal) 783 ± 72 1292 ± 103 2768 ± 153 

F (1, 26) 1.089 1.998 2.357 

Main Effect P-Value 0.306 0.1609 0.05 
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Abstract 

 
Purpose: The aim of this present study was to determine the effect of consuming a 

beverage containing soluble fiber dextrin (SFD) on subjective appetite, the plasma 

concentration of selected hormones and metabolites related to appetite, the glycemic 

response, and food intake in healthy adults.  Methods. In a double-blind, randomized, cross-

over study, forty-one participants consumed a standardized lunch meal with a test beverage 

containing 0g, 10g or 20g fiber from SFD. Appetite questionnaires were completed and 

blood samples collected immediately before lunch and at regular intervals for 150 minutes.  

Then, an afternoon snack was provided and the amount eaten recorded.  The participants 

were then allowed to leave the laboratory, but were asked to complete hourly appetite 

questionnaires and to keep a diet diary for the remainder of the day. Results. Consuming the 

test beverages containing SFD had no effect on subjective appetite over the 150 minutes 
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following consumption (p>0.05).  After the participants left the laboratory (210 minutes – 

510 minutes post consumption), mean values for hunger and desire to eat were significantly 

lower and fullness higher following consumption of the test beverage containing 20g fiber 

from SFD (p<0.05).  There was no statistically significant effect of consuming SFD on food 

intake at the test snack or during the evening period.  Plasma GIP was lower following 

consumption of the 20g fiber from SFD test beverage (p<0.05), but there was no treatment 

effect on the plasma concentration of GLP-1 ghrelin, CCK-8, PYY3-36, insulin or glucose 

(p>0.05). Conclusion.  The consumption of SFD may reduce subjective appetite several 

hours after consumption although this did not translate into an effect on food intake.    

 
Keywords: Dietary Fiber, Dextrin, Appetite, Food Intake 

 

Introduction 

 
The rapid rise in the number of overweight and obese individuals has increased 

efforts to identify foods or food ingredients that promote satiation or satiety and reduce 

energy intake.  Dietary fiber has attracted considerable interest because increased fiber 

consumption is associated with a lower body weight [1-4] or a lower body mass index (BMI) 

[5-8].  It is possible that the effect of fiber on body weight is due to increased satiation and 

decreased short-term energy intake [9-13] although a recent systematic review has 

questioned the satiating effect of some dietary fibers [14].  The intake of dietary fiber by 

consumers is well below recommended levels in many countries [15-16] and the 

development of dietary strategies to increase the consumption of fiber may be useful in 

reducing the number of overweight and obese individuals.  
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While strategies for increasing fiber intake have generally focused on increasing the 

consumption of high fiber foods such as fruits and vegetables, these interventions have had 

limited success in changing eating habits and therefore little impact on overall fiber intake 

[17-18].  An alternative strategy to increase the consumption of fiber is to develop functional 

fibers that provide similar physiological benefits to naturally occurring high fiber foods but 

that can be incorporated into a wide array of commonly eaten foods.  One such functional 

fiber ingredient is soluble fiber dextrin (SFD); a type of dietary fiber that completely 

dissolves in water without noticeably changing its appearance, taste or viscosity [19]. SFD is 

resistant to digestion in the small intestine but may be fermented in the colon [20].  To date, 

only a limited number of studies have been conducted regarding the impact of SFD on 

appetite or food intake. These studies have found that adding SFD to a beverage reduces 

appetite and food intake at a subsequent test meal [19, 21].  This effect on food intake may be 

explained, in part, because SFD suppresses the post-prandial ghrelin response [22].  The 

influence of SFD on other hormones related to appetite such as cholecystokinin-8 (CCK-8), 

glucagon like peptide 1 (GLP-1), peptide YY3-36 (PYY3-36), ghrelin, and glucose-dependent 

insulintropic polypeptide (GIP) has not been investigated.  In addition, SFD may also alter 

the post-prandial glycemic response.  For example, studies have shown that dietary fiber 

reduces the post-prandial plasma concentration of glucose and insulin [23]. This effect may 

be due to the replacement of available carbohydrate with fiber [24], a change in glucose 

absorption kinetics due to a slower gastric emptying rate [25], or the fermentation of fiber to 

produce short-chain fatty acids (SCFAs) that improve glycemic control [26].  A change in the 

postprandial glycemic response may also influence appetite by reducing the glycemic index 

of a meal [27].  
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The primary aim of this present study was to test the effect of a beverage containing 

SFD on subjective appetite in healthy adults. Additionally, the effect of SFD on food intake, 

glucose, insulin, CCK-8, GLP-1, PYY3-36, ghrelin, and GIP was determined. Based on 

previous work [19], we hypothesize that SFD will increase feelings of satiety and decrease 

energy intake at subsequent meals and that these effects will be modulated, in part, by 

changes in the plasma concentration of putative satiety hormones.  

 

Methods 

 
This study was conducted with the approval of the Iowa State University Institutional 

Review Board and signed informed consent was obtained from all participants prior to 

enrolling in the study. 

 
Participants 

Potential participants were informed about the study via a mass email sent out to Iowa 

State University faculty, students and staff and flyers advertising the study posted in the local 

community.  Individuals interested in the study were invited to a screening session where 

they completed a questionnaire that posed questions about their general health.  In addition, 

the participant’s height and body weight was measured using a calibrated stadiometer (Model 

S100, Ayrton Corp., Prior Lake, MN) and clinical weighing scales (Detecto 758C, Cardinal 

Scale Manufacturing Company, Webb City, MO).  The participants were asked to taste 

samples of all the test foods and rate each of them on a 9-point scale.  Participants were only 

included in the study if they were aged between 18 – 40 years, had a BMI between 19.9 and 

29.9 and were willing to eat the test foods.  Participants were excluded from the study if they: 
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had a presence or history of gastrointestinal disease, were a restrained eater (≥14 on the 

restraint section of the three-factor eating questionnaire) [28], used tobacco products, did not 

find the test foods palatable (< 5 on a 9 point scale), had an acute or chronic disease, were 

using medication that lists an effect on appetite as a side effect, or did not regularly consume 

an afternoon snack (< 4 times a week). 

 
Protocol 

This study used a double-blind, randomized, cross-over design with each participant 

completing three separate test sessions.  There was a washout period of at least one week 

between each test session.  Participants were asked to avoid alcohol consumption and 

strenuous physical activity for the 24 hours before each test session and to refrain from eating 

or drinking (except water) after 10:00 pm on the evening before each test day.  On the 

morning of each test session the participants were required to eat a standardized breakfast 

that was provided by the research team and then fast until reporting to the test facility four 

hours later.  

 
On arriving at the test facility, an indwelling catheter was placed into the participant’s 

non-dominant arm. Participants were then allowed to rest for 30 minutes before a baseline 

blood sample was collected and appetite questionnaire completed. Then, the participants 

were served lunch with one of three test beverages and asked to consume the test meal in its 

entirety within 15 minutes. On completion of this meal, participants were asked to fill out an 

appetite questionnaire and a blood sample was collected (t0). Further appetite questionnaires 

and blood samples were collected at t0+15, 30, 45, 60, 90, 120 and 150 minutes. Following 

the 150 minute measurement, subjects were served a snack and asked to eat until comfortably 



www.manaraa.com

107 

 

full. The snack meal was weighed before and after serving, without the participant’s 

knowledge, and the amount consumed recorded. The indwelling catheter was then removed 

and participants were instructed to complete hourly appetite questionnaires contained on a 

hand-held computer (PalmPilot) and record all foods and beverages eaten during the 

remainder of the day using a diet diary.   

 
Test foods and beverages 

The participant’s daily energy expenditure was calculated using validated equations 

to estimate basal metabolic rate [29] and multiplying this figure by a physical activity level 

of 1.5. The standardized breakfast meal consumed on the morning of each test session 

provided 25% of the participant’s estimated daily energy requirement.  The macronutrient 

composition of the breakfast meal was 60% carbohydrate, 14% protein and 26% fat and 

consisted of Honey Nut Cheerios® (General Mills Inc., Minneapolis, MN), Great Value 

whole milk (Wal-Mart Stores Inc., Bentonville, AR), wheat bread (Sara Lee Corp., Chicago, 

IL), and strawberry jelly (J.M. Smuckers Comp., Orville, OH). The lunch meal of chicken 

salad was prepared using Swanson® canned chicken (Campbell Soup Comp., Camden, NJ), 

fat free ranch dressing (Kraft Food Groups Inc., Northfield, Il), Kraft® light mayonnaise, 

iceberg lettuce, Great Value butter and dried cranberries (Ocean Spray ®, Lakeville, MA) 

and was served with Wonder Bread® white bread (Flower Foods, Thomasville, GA). 

Excluding the beverage, the test meal provided 25% of the participant’s total daily energy 

requirement and had a macronutrient profile of 55% carbohydrate, 15% protein and 30% fat. 

The ad libitum snack provided at the end of each test session consisted of sliced apples with a 

caramel dip (Crunch Pak ®, Cashmere, WA). 
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The test beverage served with the lunch meal provided 0, 10 or 20 grams of fiber 

from SFD. The SFD ingredient (Tate & Lyle Ingredients Americas LLC, Hoffman Estates, 

IL) contained 50% fiber and 50% digestible carbohydrate.  Maltodextrin, a rapidly digestible 

carbohydrate, was added to match the beverages for available carbohydrate. Treatment 1 

contained 10g fiber (20g SFD) plus 10g of maltodextrin and provided 20g total digestible 

carbohydrate. Treatment 2 contained 20g fiber (40g SFD) and provided 20g total digestible 

carbohydrate.  The control beverage contained 20g of maltodextrin and provided 0g of fiber 

and 20g total digestible carbohydrate. In addition to being matched for available 

carbohydrate, all beverages were approximately matched for energy (80, 83, and 85 kcal for 

the control, treatment 1 and treatment 2 respectively). To create the test beverages, each 

treatment mixture was dissolved in 355ml of water and flavored with Crystal Light (Kraft 

Food Groups Inc, Northfield, Il) 

 
Measurement of food intake 

Data from diet diaries were analyzed using NutritionistPro© software and checked for 

validity using the McCrory method [30].  No trends in over or under reporting of caloric 

intake were observed.   

 
Subjective appetite measures  

Subjective appetite was measured using a standard appetite questionnaire [31] that 

posed the following questions:  How hungry do you feel right now?  How full do you feel 

right now?  What is your desire to eat right now?  What is your prospective consumption 

right now? How thirsty are you right now?   Responses were measured using a visual 

analogue scale anchored with opposing statements at each end (e.g. not hungry at all or as 
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hungry as I have ever felt).  Responses to the appetite questions were captured and stored on 

a PalmPilot hand-held that placed a time and date stamp on each entry to check for protocol 

compliance. For all appetite measurements collected outside the laboratory, compliance was 

defined as completion of the appetite questionnaire within 15 minutes of the designated time.  

Only time points with a minimum of 70% of participants with compliant responses were 

included in the final analysis.     

 
Glucose and hormone analysis 

Blood was drawn into 4 ml EDTA-coated vacutainer tubes and mixed with 400 µl of 

10 000 KIU (1·4 mg)/ml aprotinin. Samples were centrifuged for 15 minutes at 3000 g and 

4°C then divided into aliquots before being stored at -80°C for further analysis.  Plasma 

samples were assayed for glucose using a biochemical analyzer (YSI Life Sciences, Model 

2700 select) while all other analyses (insulin, GLP-1, PYY3-36, GIP, ghrelin and CCK) were 

completed using established RIA procedures [32-33]. All samples were run in duplicate and 

all samples from a given participant were analyzed within the same batch. Insulin antibodies 

and the insulin and GIP tracers were made in Dr Hsu’s laboratory. All other 125I-Tracers used 

were purchased from PerkinElmer (Waltham, MA). The ghrelin and GIP analysis were done 

using T-4747 (Bachem, Bubendorf, Sui) and H-027-02 (Phoenix Pharmaceuticals Inc., 

Burlingame, CA) antibodies. Prior to RIA analysis for CCK, GLP-1 and PYY3-36, samples 

were ethanol extracted. Briefly, 0.5 mL of plasma was mixed with 1mL of 96% ethanol and 

allowed to stand for 10 minutes at room temperature. Incubated samples were then 

centrifuged at 3000rpm and 4°C for 15 minutes. After centrifuging, the supernatant was 

decanted into a clean microcentrifuge tube and dried in a Jouan RC 10.10 vacuum 

concentrator (Thermo Fisher Scientific, Waltham, MA) at 37°C. Dried extracts were then 
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reconstituted using 0.5mL of assay buffer and stored at -20°C for further analysis. Antibodies 

for PYY3-36 and GLP-1 were purchased from Bachem (T-4090 & T-4056) while CCK-8 

antibody C2581 was purchased from Sigma Aldrich (St. Louis, MO.  Detection limits and 

coefficient of variations (CV) for each of the RIA measured hormones are as follows: 

Insulin: 1.5 – 200 µU, interassay CV 13%, intra-assay CV 7%; Ghrelin: 50 – 1600 pg/mL, 

interassay CV 15%, intra-assay CV 7%; GLP-1: 7.5 – 1000pg/mL, inter-assay CV 12%, 

intra-assay CV 8%, PYY3-36: 5 – 320pg/mL, inter-assay CV 15%, intra-assay CV 8%, GIP: 

25 – 2500pg/mL, inter-assay CV 9%, intra-assay CV 6%, CCK-8: 0.5 – 80pg/mL, interassay 

CV 11%, intra-assay CV 7%.   

 
Statistical analysis 

SPSS for windows (version 20, 2012, IBM, Armonk, NY) was used to perform all 

statistical analysis and data are presented as means ± standard error. A mixed model, 

repeated measures analysis of covariance (ANCOVA) was used to test overall treatment 

effect on plasma parameters. Baseline values were included as a covariate and participants 

were added as random variables in the model.  The appetite data was split into two periods: 

in-laboratory data and free-living data.  This was due to a change in the protocol and a 

reduction in compliance after the participants had left the laboratory.  For the in-laboratory 

data, a mixed model, repeated measures ANCOVA was used to test overall treatment effect 

on plasma parameters and subjective appetite measurements.  Baseline values were included 

as a covariate and participants were added as random variables in the model.  For the free-

living appetite data, the mean rating for each of the subjective appetite questions was 

calculated and analyzed using a one-way, repeated measures analysis of variance (ANOVA).    

Differences in food intake were also analyzed using one-way, repeated measures ANOVA. 
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For all measures, post-hoc analysis was performed by Bonferoni adjusted pairwise 

comparison of treatment effects.  Statistical significance was set at p<0.05. 

 
A power calculation indicated that a sample size of 38 would allow the detection of a 

10% difference in subjective appetite measures (the primary outcome measure) with α=0.05 

and β= 0.9.  Forty five participants were recruited to allow for attrition. 

 

Results 

 
Participant demographics 

Forty-five participants were recruited and randomized to a treatment order. Two 

males and two females dropped from the study due to scheduling conflicts. Forty-one 

participants, 19 females and 22 males, completed the study. The participant’s mean age was 

24 ± 4 years and mean BMI was 23.4 ± 2.5 kg/m2. 

 
Hormones and glucose 

Figure 1 shows the data for the plasma concentration of GIP, ghrelin, CCK-8 and 

PYY3-36. Statistical analysis of results revealed a significant main effect of treatment on GIP 

(F(2, 179) = 7.101, p = 0.001). Post hoc analysis showed that the plasma concentration of 

GIP was lower following consumption of the 20g fiber from SFD beverage as compared to 

the control (p=0.001). No statistically significant main effect of treatment was found on 

ghrelin (F(2, 294) = 2.663; p=0.071), CCK-8 (F(2, 200) = 2.496; p=0.085), or PYY3-36 (F(2, 

11) = 2.091; p=0.172). Additionally, there was no observed treatment effect on plasma 

glucose (F(2, 147) = 1.250; p=0.290),  insulin (F(2, 177) = 1.121;p=0.328), GLP-1 (F(2, 246) 

= 0.028; p=0.973) (data not shown). 



www.manaraa.com

112 

 

Subjective appetite 

Data collected in the laboratory 

Data for subjective appetite ratings Hunger, Fullness, Desire to Eat and Prospective 

Consumption that were collected in the laboratory are shown in Figure 2.  There was no 

statistically significant effect of treatment on: hunger (F (2, 139) = 0.324; p=0.724), fullness 

(F(2, 178) = 1.351; p=0.262), desire to eat (F (2, 118) = 1.054; p=0.352), prospective 

consumption (F (2, 54) = 0.843;p=0.436), or thirst (F(2, 112) = 0.977; p=0.379 data not 

shown. 

 
Free-living appetite data 

Figure 3 shows mean appetite ratings of the free-living data subset for hunger, 

fullness, desire to eat and prospective consumption. These time points correspond to 3.5 – 8.5 

hours (210 – 510 minutes) post consumption of test beverages. Repeated measures ANOVA 

revealed significant main treatment effects on hunger (F(2, 39) = 4.291; p=0.021), fullness 

(F(2, 39) = 4.145; p=0.023), and desire to eat (F (2, 39) = 6.459; p=0.004). Post-hoc analysis 

showed lower hunger and desire to eat in addition to higher fullness following consumption 

of the 20 g fiber from SFD beverage as compared to the control. There was no significant 

main treatment effect for prospective consumption (F(2,39) =3.018; p=0.060) or thirst 

(F(2,39)=2.780; p =0.068), data not shown. 

 
Food intake 

Table 1 shows mean intakes for each treatment. Statistical analysis revealed no main 

effect of treatment on calories consumed at the snack, consumption over the rest of the day 

(diet diary intake), or the combined total energy intake. 
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Discussion 

 
This study found that consuming a beverage containing 20g fiber from SFD reduces 

the plasma concentration of GIP during the first 150 minutes post consumption and reduces 

feelings of hunger and desire to eat while increasing fullness several hours after 

consumption.  However, there was no effect on other biomarkers of appetite during the first 

150 minutes after consumption or food intake throughout the test day.   

 
There was a statistically significant reduction of the plasma concentration of GIP 

during the first 150 minutes post-consumption. GIP is secreted by K cells of the small 

intestine in response to food intake and functions to stimulate insulin secretion [34-37]. High 

fiber, low glycemic foods are generally associated with a decreased postprandial glucose and 

insulin response, in part regulated by changes in plasma GIP concentration [38-40]. Although 

this study confirmed previous research showing a reduction in plasma GIP concentration 

following a meal with a higher fiber content, [39] we did not detect a significant treatment 

effect on plasma glucose or insulin concentration. Despite similar fiber doses being used in 

the two studies (27g vs 20g), there were differences in the characteristics of the test meal and 

fiber source used.  Additionally, unlike previous studies, the present study matched 

treatments for available carbohydrate.  

 
Although we did not detect a significant differences in subjective appetite measures 

while participants were in the laboratory, participants reported increased fullness, reduced 

hunger and reduced desire to eat following the 20g fiber from SFD treatment 3.5 to 8.5 hours 

after the beverage was consumed. It is not clear why this effect was observed, but one 

possible explanation may be due to the fermentation of SFD in the colon.  Ingestion of 
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fermentable carbohydrates has been shown to produce short-chain fatty acids (SCFAs) and 

increase satiety in both rodents and humans models potentially through regulation of satiety 

hormones GLP-1 and PYY3-36 [41-44].  However, it could take several hours for the SFD to 

reach the large intestine to be fermented, which may explain why no effect was observed in 

the laboratory.  In this present study, we cannot confirm that the SFD was fermented or that 

this fermentation was temporally related to changes in appetite or biomarkers of appetite 

such as GLP-1 or PYY3-36.  Further studies are required to investigate the mechanisms 

through which SFD may influence appetite over a longer time-period. 

 
Despite the observed changes in appetite 3.5 – 8.5 hours after consuming the SFD 

containing beverages, this did not translate into a reduction in ad libitum food intake as 

measured using diet diaries. These results differ from those provided by previous studies that 

found reduced appetite and food intake after consuming SFD [19, 21].  However, these prior 

studies provided the SFD in multiple servings with the initial dose of SFD being given 

following an overnight fast.  In this present study, a single preload was used and SFD was 

provided with lunch rather than breakfast. Regarding the reduction in appetite observed 

during the evening period, it is possible that this decrease in appetite was not sufficiently 

large to robustly influence food intake in a free-living situation where participants are more 

likely to be exposed to factors that stimulate food intake [45-47].  In addition, it is possible 

that errors in recording food intake using diet diaries could mask a small effect on food 

intake.   

 
Overall this study’s results did not show a strong effect of SFD on appetite, food 

intake and plasma markers of appetite for the first 150 minutes post-consumption. However, 
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the beneficial changes on subjective appetite observed during the evening hours warrants 

further attention.  It is not clear why SFD would promote changes in appetite several hours 

after consumption but one possible explanation is that SFD may promote increased satiety 

through colonic fermentation and production of SCFAs. One previously mentioned limitation 

of this study is that breath hydrogen measures were not collected during the time over which 

significant effects on appetite were observed to confirm fermentation occurred. Follow up 

studies should consider a longer test day in order to fully capture the relationship between 

colonic fermentation of SFD, biomarkers of appetite, and subjective appetite ratings under a 

controlled environment.  A second limitation of this study is that this was a single dose, 

single day feeding study and results cannot be extrapolated to conclude that SFD would have 

long-term effects on body weight. Future research should be conducted to elucidate 

physiological mechanisms behind the potential satiating abilities of SFD and to assess the 

long-term effects of SFD on energy intake and body weight.   
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Tables and Figures 

 

 

Fig. 1 Plasma hormone responses for glucose-dependent insulintropic polypeptide (a), 

cholecystokinin (b), ghrelin (c), and peptide YY3-36 (d) measured from baseline through 150 

minutes post consumption of a test beverage containing 0 g (squares), 10 g (triangles) or  20g 

(circles) of fiber from SFD. * Indicates a statistically significant decrease in plasma 

concentration as compared to control (p <0.05).  
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Fig. 2 VAS scores of hunger (a), fullness (b), desire to eat (c), and prospective consumption 

(d) rated from baseline through 150 minutes post consumption of a test beverage containing 

0 g (squares), 10 g (triangles) or 20g (circles) of fiber from SFD. There were no statistically 

significant treatment differences observed (p > 0.05). 
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Fig. 3 Mean ± SE for subjective appetite measures hunger, fullness, desire to eat, and 

prospective consumption collected 3.5 – 8.5 hours post consumption of test 

beverages. Different letters for a given appetite response indicates statistically 

significant difference (p < 0.05) 

 

 

Table 1 Food Intake Data – Means (kCal) ± SE 

Treatment Beverage 
(g fiber from SFD) 

Snack Diet Diary Total (Including 
Breakfast and Lunch) 

0 168 ± 15 1381 ± 93 2857 ± 100 

10 152 ± 13 1257 ± 83 2718 ± 95 

20 171 ± 15 1365 ± 97 2845 ± 108 

F (2, 39) 1.141 0.723 1.005 

Main Effect P-Value 0.330 0.492 0.375 
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Abstract 

Purpose. The aim of this study was to determine the effect of consuming soluble 

fiber dextrin (SFD) on subjective appetite, breath hydrogen, the plasma concentration of 

hormones related to appetite, and food intake in healthy adults. Methods. Forty-three 

participants completed a double blind, randomized, cross-over study. Two sources of SFD 

(corn and tapioca) at two doses (10 and 20g) were tested in this study along with a control 

treatment. For each treatment, 50% of the SFD was provided in liquid form as part of the 

breakfast meal and 50% in solid form for the mid-morning snack. Appetite questionnaires, 

blood samples and breath hydrogen samples were collected immediately before breakfast and 

at regular intervals during the 10 hour test session. Additionally, participants were fed an ad 

libitum lunch meal, afternoon snack and dinner meal and the amount eaten recorded. 

Following the dinner meal, participants left the laboratory but were required to keep a diet 
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diary for the remainder of the day. Results. Breath hydrogen concentrations were 

significantly higher following SFD consumption as compared to control (p <0.05). There was 

no observed overall treatment effect of consuming SFD on the plasma concentration of GLP-

1, ghrelin, CCK-8 or PYY3-36, (p>0.05). Consuming SFD also had no effect on subjective 

appetite or food intake during the test day (p>0.05).  Conclusion. Consuming SFD increased 

breath hydrogen indicating that fermentation occurred. However, this study does not support 

an effect of SFD on food intake, subjective appetite ratings or biomarkers of appetite during a 

single day.  

 
Keywords: Dietary Fiber, Dextrin, Appetite, Food Intake 

 

Introduction 

 
Throughout the developed world, the number of overweight and obese adults has 

risen markedly over the past few decades.  This is of concern as these conditions are 

associated with increased risk of developing chronic diseases such as type 2 diabetes [1-3], 

cardiovascular disease [4], or cancer [5-7].  Consequently, reducing the number of 

overweight or obese individuals is a leading public health goal in developed countries.   

 
Resistant starch is a type of fiber that can be isolated from foods and incorporated 

into a wide variety of food products.  As resistant starch provides fewer calories per gram 

than rapidly digestible starch it could aid weight management through an energy dilution 

effect.  Accumulating evidence from studies using rodent models indicate that replacing 

rapidly digestible starch with resistant starch reduces weight gain in obesity resistant and 

obesity prone rats [8-9].  Additionally studies conducted in humans suggest that resistant 
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starch may also aid weight management by increasing satiety and decreasing short term food 

intake [10-12]. 

 
Soluble fiber dextrin (SFD) is a type of dietary fiber derived from starch. Like 

resistant starches, data from previous studies suggest that consuming soluble fiber might 

influence appetite several hours after consumption [13-15].  A potential explanation for this 

delay in an observed effect is that it takes several hours for the SFD to reach the large 

intestine.  Here, the SFD undergoes bacterial fermentation to produce short-chain fatty acids 

(SCFA).  Recent studies using colonic cells report that SCFA trigger the release of the 

hormones GLP-1 and PYY3-36 [16-17].  As these hormones are related to physiological 

control of food intake [18], a possible explanation for the results obtained in the study of 

SFD is that colonic fermentation of SFD produced SCFAs that in turn increased secretion of 

GLP-1 and PYY3-36.   

 
The primary outcome of this present study was to determine the effect of consuming 

different doses of SFD on food intake over a single day.  The secondary outcomes were to 

determine the effect of SFD on subjective appetite, satiety-related hormones and breath 

hydrogen as these may provide a mechanistic explanation for any effect on food intake.  

Additionally, it was determined if SFD produced a dose response effect and if there were any 

differences between the SFD derived from corn and tapioca starch. We hypothesized that 

participants consuming SFD would reduce food intake over a single day due to increased 

satiety.  We also hypothesized that the increased satiety would be explained by increased 

breath hydrogen, higher CCK-8, GLP-1 and PYY3-36 and lower ghrelin.  In addition, we 

hypothesized that the effect on appetite would be dose dependent (increasing the SFD dose 
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will have a larger effect on the outcome measures) and that there would be no difference 

between the sources of SFD (corn vs tapioca). 

 

Methods 

 
Participants 

Healthy adults aged 18-45 years with a BMI of 19.9 – 29.9 kg/m2 were recruited via a 

mass email sent to Iowa State University faculty, students and staff.  Individuals interested in 

the study were invited to a screening session where their height and weight were measured 

and they were asked to complete a questionnaire that posed questions about their general 

health and attitudes to food. Additionally, during the screening, participants were asked to 

taste test foods used in the study (SFD beverages, bars, and foods used for ad libitum test 

meals) and to rate the palatability of each item on a scale from 1 (least palatable) to 9 (most 

palatable). Participants were excluded from the study if they: were outside the target age or 

BMI range, were not weight stable (weight change of 3kg or more in the past 3 months), did 

not regularly consume breakfast and afternoon snacks, had a presence or history of 

gastrointestinal disease or food intolerance, were a restrained eater (≥14 on the restraint 

section of the three-factor eating questionnaire) [19], did not find the test foods palatable (< 5 

on a 9 point scale), or were using medication that lists a side effect on appetite. This study 

was approved by the Iowa State University IRB and all participants signed an informed 

consent form prior to being enrolled in the study. 
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Protocol 

This study used a double-blind, randomized, cross-over design. All participants 

reported to the laboratory on five separate occasions with at least one week between each test 

session.  Participants were instructed to avoid consuming alcohol or conducting strenuous 

activity in the 24 hours prior to each test session.  On the evening before each test session, 

participants were asked to consume a standardized evening meal that had been provided by 

the research team.  The participants were asked to finish eating the meal by 9:00pm and to 

refrain from consuming any further foods or beverages, except water, until reporting to the 

laboratory at 7:30am the following morning.  

 
On reporting to the laboratory, the participant’s body weight was measured using 

clinical weighing scales (Detecto 758C, Cardinal Scale Manufacturing Company, Webb City, 

MO).  They were then taken to a quiet room where an indwelling catheter inserted into their 

non-dominant arm by a registered nurse.  The participant was allowed to acclimatize to the 

indwelling catheter for 30 minutes before a baseline blood draw and breath sample were 

taken.  A baseline appetite questionnaire was also completed.   The participant was then 

provided with a breakfast meal that provided 20% of their estimated daily energy 

requirements which they were required to eat in its entirety within 15 minutes.  The breakfast 

included one of the five SFD test beverages. On completion of this meal, another blood draw 

and breath sample were collected and an appetite questionnaire was completed (t=0).  At 

10:15am (t=120), one of five SFD test bars was served as a mid-morning snack which the 

participant was required to eat in its entirety within 5 minutes of serving.  An ad libitum 

lunch meal in excess of what would reasonably be expected to be consumed was served at 

12:30pm (t=240). Participants were instructed that they had 15 minutes to eat until 
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comfortably full, after which, the meal was withdrawn. A mid-afternoon snack, in excess of 

what could reasonably be eaten, was provided at 3:00pm (t=390).  Participants were 

instructed that they had for 10 minutes to eat until comfortably full. After the final blood 

draw was taken (t=600), the indwelling catheter was removed from the participant’s arm.  An 

ad libitum evening meal was served and the participant was instructed to eat until 

comfortably full.  Following this meal, the participant was allowed to leave the laboratory.   

 
Participants were asked to keep a diet diary to record all food and beverage intake for 

the remainder of the day.  These diaries were analyzed to determine energy and 

macronutrient intake using Nutritionist Pro™ Diet Analysis Software (version 2.1.13; First 

DataBank, San Bruno, CA). During the test day, participants were asked to complete twenty-

four appetite questionnaires at regular intervals throughout the test day (t=15, 30, 45, 60, 90, 

120, 135, 150, 165, 180, 240, 255, 270, 285, 300, 360, 390, 405, 420, 435, 450, 480, 540, and 

600 minutes after breakfast consumption). Breath samples were collected in two hour 

intervals (t=120, 240, 360, 480 and 600 minutes after breakfast consumption). Additionally, 

blood samples were collected twelve times following the breakfast meal (t=60, 120, 180, 

240, 270, 300, 260, 290, 420, 480, 540 and 600 minutes after breakfast consumption). 

 
Test foods and beverages 

The SFD used in the present study was derived from two different sources: corn and 

tapioca.  Both sources of SFD provide 50% fiber and 50% digestible carbohydrate, therefore 

the two doses (20 and 40g SFD) tested provided 10 and 20g fiber respectively. Five 

treatments were used in this study: control, corn10 (20 g SFD to provide 10g fiber), corn20 

(40g SFD to provide 20g fiber), tapioca10 (20g SFD to provide 10g fiber) and tapioca20 (40g 
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SFD to provide 20g fiber).  For each treatment, half of the SFD dose was provided with 

breakfast and half as part of a mid-morning snack.  The SFD was consumed as a milk-based 

beverage with breakfast and as an ingredient in a snack bar product at the mid-morning 

snack.   

 
The standardized dinner meal consumed on the evening before test session included 

chicken nuggets (Tyson Foods Inc., Springdale AR), barbeque sauce (Kraft Food Groups Inc, 

Northfield Il), mashed potatoes (Idahoan Foods, Idaho Falls, Idaho), Great Value mixed 

vegetable (Wal-Mart Stores Inc., Bentonville, AR), and chocolate chip cookies (Nabisco®, 

East Hanover, NJ) for dessert.  This meal provided 814 kcal calories and had a macronutrient 

profile of 15% protein, 46%carbohydrate and 39% fat.  

 
For the breakfast meal, participants’ basal metabolic rate was estimated using 

validated equations [20].  This figure was multiplied by 1.3 to estimate total daily energy 

(TEE) requirements. Not including the test beverage, the breakfast meal provided 20% of the 

calculated TEE with a macronutrient profile of 13% protein, 61% carbohydrate and 26% fat. 

Foods included in the meal were hard-boiled egg (Crystal Farms, Minnetonka, MN), 

pineapple chunks (Dole Food Company, Westlake Village, CA), cinnamon raisin bagel 

(Bimbo Bakeries, Fort Worth TX) and salted butter (Land O Lakes®, Arden Hills, MN).  

 
Following the mid-morning snack bar, which provided the second half of the daily 

SFD dose, ad libitium meals were served for lunch, afternoon snack and dinner. The lunch 

meal consisted of pasta and tomato sauce (Barilla Group, Parma, Italy) with Kraft® shredded 

parmesan cheese. The afternoon snack was Classic Lay’s® potato chips (PepsiCo Inc., 

Purchase NY) and dinner was chicken fried rice (Kahiki® Foods Inc., Colombus, OH). All 
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meals and snacks were served with an 8 oz bottle of Dasani® water (The Coca-Cola 

Company, Atlanta, GA). Participants were not allowed to eat or drink outside of the test 

foods and drinks provided.    

 
Subjective appetite and food intake 

Participants completed a standard appetite questionnaire contained on a PalmPilot. 

The following questions were asked: How hungry do you feel right now?  How full do you 

feel right now?  What is your desire to eat right now?  What is your prospective consumption 

right now? Responses were measured using a visual analogue scale anchored with opposing 

statements at each end (e.g. not hungry at all or as hungry as I have ever felt). Answers were 

captured and stored with a time and date stamp so compliance to the study protocol could be 

determined.   

 
Hormones and breath hydrogen 

Breath samples were collected using a custom sampler kit (Quintron Inc., Milwaukee, 

WI) and analyzed using a Quintron MicroLyzer Model SC. Blood was drawn into EDTA 

coated vacutainers, mixed with a relevant preservative and centrifuged.  The plasma was 

collected and stored at -80C until being assayed.  Plasma samples were ethanol extracted [21] 

before being analyzed for GLP-1, CCK-8 and PYY3-36 using established RIA procedures [22-

23]. Ghrelin was also measured via radioimmunoassay but used unextracted blood samples. 

For all analyses, samples were run in duplicate and all samples from a given participant were 

analyzed within the same batch. All 125I-Tracers used were purchased from PerkinElmer 

(Waltham, MA). Antibodies for Ghrelin, PYY3-36 and GLP-1 were purchased from Bachem 

(T-4747, T-4090 & T-4056 respectively) while CCK-8 antibody C2581 was purchased from 
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Sigma Aldrich (St. Louis, MO).  Detection limits and coefficient of variations (CV) for each 

of the RIA measured hormones are as follows: Ghrelin: 50 – 3200 pg/mL, interassay CV 

13%, intra-assay CV 10%; GLP-1: 7.5 – 1000pg/mL, inter-assay CV 12%, intra-assay CV 

9%, PYY3-36: 3.7 – 250 pg/mL, inter-assay CV 14%, intra-assay CV 8%, CCK-8: 0.62 – 

80pg/mL, interassay CV 13%, intra-assay CV 8%. 

 
Statistical analysis 

A power calculation indicated that a sample of 43 participants would be sufficient to 

detect a 150 kcal difference in food intake at p<0.05 and beta = 0.9.  Forty eight participants 

were recruited to allow for attrition. Means and standard error were calculated for all study 

variables. Treatment effects of SFD on subjective appetite measures, hormone response and 

breath hydrogen data were analyzed with a mixed model ANCOVA using treatment and time 

point as repeated measures and baseline as a covariate. Treatment effects on food intake were 

analyzed using a one way, repeated measures ANOVA. All post-hoc, pairwise comparisons 

were performed using Bonferroni adjustments. Statistical analysis was conducted using SPSS 

for Windows or Mac (version 16.0; SPSS, Chicago, IL, USA).   

 

Results 

 
Participant demographics 

In total, 68 people completed the screening process for this study. Twenty were found 

to be ineligible with the two most common disqualifying factors being BMI outside of the 

target range (6 people) and low palatability ratings for the test foods (12 total: 2 for test 

beverage, 9 for test bar, 1 for pasta lunch). Forty-eight participants were randomized into the 
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study. One male participant dropped after completing two sessions due to an unrelated health 

issue. Four participants (3 female, 1 male) dropped after four sessions due to schedule 

conflicts. Forty-three participants completed the study (22 male and 21 female).  Average age 

was 25 ± 3.6 years with a BMI of 23.9 ± 2.9 kg/m2. 

 
Breath hydrogen 

Figure 1 shows mean breath hydrogen results by treatment. Mixed-model ANCOVA revealed 

a significant overall treatment effect (F(4, 527) = 17.0, p < 0.001) with all SFD treatments having 

significantly higher breath hydrogen than control (p < 0.05). Post –hoc analysis showed a dose 

response for tapioca based SFD with Tapioca20 having significantly higher breath hydrogen than 

both Tapioca10 and Corn10 (p < 0.001 for both). Corn based SFD showed a trend towards a dose 

response with Corn20 having slightly higher breath hydrogen response when compared to Corn10 and 

Tapioca10 (p=0.066 and 0.052 respectively).  

 
Hormones 

Figure 2 shows data for the plasma concentration of GLP-1, ghrelin, CCK-8 and PYY3-36. 

Statistical analysis did not reveal an overall treatment difference for any hormone measures: GLP-1 

(F(4, 683) = 1.478; p>0.05),  ghrelin (F(4,571= 0.372; p>0.05), CCK-8  (F(4, 659) = 0.851; p>0.05) 

and PYY3-36 (F(4, 659) = 2.262; p>0.05). Post-hoc analysis however showed significantly higher 

PYY3-36 concentrations for the Corn20 treatment as compared to control (p=0.043). 

 
Subjective appetite 

Figure 3 shows mean appetite ratings for hunger, fullness, desire to eat and prospective 

consumption from baseline through 10 hours (600 mins) post-consumption of the treatment beverage. 

Repeated measures ANCOVA showed no significant main treatment effects on hunger (F(4, 603) = 
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2.722;p>0.05), fullness (F(4,853) = 1.720; p>0.05), desire to eat (F (4, 679) = 0.909; p>0.05) and 

prospective consumption (F(4,766)=1.247;p>0.05).   

 
Food intake 

Food intake measures consisted of in laboratory, ad libitum lunch, afternoon snack 

and dinner intake as well as evening food intake measured from participant diet diaries. 

Table 1 shows mean intakes for each treatment. Statistical analysis revealed no main 

treatment effect on calories consumed from the lunch, snack, evening meal or consumption 

over the rest of the day (diet diary intake). Additionally, when the breakfast and mid-morning 

snack were factored in and total caloric intake for the test day was analyzed there was no 

treatment differences observed.	

 

Discussion 

 
This present study investigated the effect of consuming SFD on food intake, 

subjective appetite, plasma concentration of several hormones related to satiety and breath 

hydrogen (an indirect marker of colonic fermentation of carbohydrates).  We hypothesized 

that SFD would be fermented to produce SCFAs, which would stimulate the secretion of 

PYY3-36 and GLP-1 from colonic cells, resulting in reduced appetite and food intake. While 

the consumption of SFD increased breath hydrogen, there were no statistically significant 

overall effects of treatment on subjective markers of appetite, hormone concentrations, or 

food intake.  Consequently, these data do not support an effect of SFD on food intake or 

appetite.  
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The results obtained by this present study are in contrast to previous studies that have 

found that consuming SFD reduces appetite [12].  While there are several possible 

explanations for these discrepant results (e.g., differences in the study group or experimental 

design) a significant difference is the vehicle used to deliver the SFD.  Previous studies have 

used a beverage as the vehicle for delivering SFD whereas this present study used a beverage 

and a solid food.  However, a number of studies have found that beverages are less satiating 

than solid foods [24-27] and it is not clear why using a solid food rather than a beverage 

vehicle would have a seemingly opposite effect on appetite.  One possibility is that dietary 

fiber influences appetite through different mechanisms than the other macronutrients 

rendering the form in which it is consumed to be less important.  Another possibility is that 

the solid food used in this present study had a strong satiating effect independent of the 

resistant dextrin content, which acted to mask an effect of SFD on appetite.  In addition to 

vehicle influences, participants were required to spend the entire day in the laboratory and 

the change in their activity levels or eating patterns may have contributed to an attenuated 

appetite response [28-29].  Further research is warranted to understand how the form in 

which SFD is consumed influences appetite and to determine the optimum vehicle for its 

delivery.  

 
We hypothesized that SFD would be fermented in the colon.  Indeed, breath hydrogen 

was higher following consumption of SFD providing evidence that SFD was fermented. A 

dose response relationship was observed but there was no statistically significant difference 

between the sources of SFD (tapioca or corn).  SFD appears to be readily fermented and the 

peak breath hydrogen concentration was higher following consumption of the SFD compared 

to recent studies of gel-forming pectin [30] or fructo-oligosaccharides [31].  However, we 
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failed to observe any statistically significant correlation between breath hydrogen and any 

questionnaire responses or biochemical markers of appetite.  This finding is in agreement 

with a recent study that found no relationship between breath hydrogen and subjective 

appetite although a statistically significant correlation between breath hydrogen and GLP-1 

was observed [32].   

 
Previous studies found that the plasma concentration of GLP-1 and PYY3-36 were 

increased when rodents ate a diet enriched with resistant starch [33].  By contrast, plasma 

concentration of GLP-1 was reduced in a human study following the consumption of a test 

food containing resistant starch [34].  In addition, cell studies have shown that SCFA 

stimulate the release of PYY3-36and GLP-1 from colonic cells [35-37].  This present study 

found no effect of consuming SFD on plasma concentration of CCK, ghrelin, PYY3-36or 

GLP-1.  These discrepant results may be due to differences in the type of fiber used and the 

dose provided, differences in the study group or differences in the experimental design.  

Further research is warranted to confirm that these biomarkers of appetite respond to the 

consumption of SFD through increased SCFA production resulting from colonic 

fermentation.  Moreover, the dose of SFD required to robustly elicit an effect is required.    

 
This present study has a number of limitations that must be considered when 

interpreting the data.  The participant’s food choices and meal times were dictated by the 

research team.  Consequently, this may have interfered with the normal expression of 

appetite. Moreover, free food was supplied which may have stimulated overconsumption 

thereby masking an effect of SFD [38-39]. These issues are common to laboratory-based 

studies where external validity is low [40-41]. It is possible that a study of free-living 



www.manaraa.com

137 

 

individuals may highlight other effects of SFD on appetite (e.g., extending time between 

meals, reduced snacking, and reduced intake at self-selected meal times). This study was also 

a single exposure study and it might take repeated exposures to a food for individual’s to 

‘learn’ its effect on appetite and alter their food intake. In conclusion, this study does not 

support an effect of SFD, when consumed in two doses split between milk and brownies, on 

food intake, appetite or biomarkers of appetite over a single day.  
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Tables and Figures 

 

 

Fig. 1 Mean ± SE for breath hydrogen rated through 600 minutes following control 

(triangles), Corn10 (diamonds), Corn20 (circles), Tapioca10 (star) and Tapioca20 (square) 

treatments. *Indicates statistical significance from control (p <0.05). Ŧ Indicates statistical 

significance from both Corn10 and Tapioca10 treatments (p<0.05). 
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Fig. 2 Plasma hormone responses for GLP-1 (A), cholecystokinin (B), ghrelin (C), and peptide YY (D) measured from 

baseline through 600 minutes following control (triangles), Corn10 (diamonds), Corn20 (circles), Tapioca10 (star) 

and Tapioca20 (square) treatments. *Indicates statistical significance from control (p <0.05). 
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Fig. 3 VAS scores of hunger (A), fullness (B), desire to eat (C), and prospective consumption (D) rated from 

baseline through 600 minutes following control (triangles), Corn10 (diamonds), Corn20 (circles), Tapioca10 (star) 

and Tapioca20 (square) treatments. There was no statistically significant treatment differences observed (p > 0.05). 
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Table 1 Food Intake Data – Means (kCal) ± SE 

Treatment Lunch Afternoon 
Snack 

Dinner Food Logs Total (including 
breakfast & 

morning snack) 
Control 441 ± 33 263 ± 18 499 ± 38 290 ± 44 2342 ± 90 

Corn10 452 ± 33 282 ± 20 534 ± 38 358 ± 60 2489 ± 94 

Corn20 457 ± 27 268 ± 19 511 ± 36 337 ± 60 2440 ± 85 

Tapioca10 444 ± 31 264 ± 18 481 ± 29 360 ± 51 2412 ± 84 

Tapioca20 422 ± 30 239 ± 18 502 ± 36 276 ± 48 2316 ± 95 

F (4, 39) 0.808 1.583 0.798 0.741 2.040 

Main Effect 
P-Value 

0.528 0.198 0.534 0.570 0.108 
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CHAPTER 6  

 GENERAL CONCLUSIONS 

 

General Conclusions 

 
Results from the previously described studies have demonstrated the following: 

1) RS4/resistant dextrin consumption did not have an effect on next meal ad libitum intake. 

2) RS4/resistant dextrin consumption did not have an effect on subject appetite ratings in the 

laboratory. 

3) In free-living conditions, appetite and food intake changes were observed, but 

inconsistent between studies. 

4) Resistant dextrin is likely fermented in the healthy young adults with peak breath 

hydrogen occurring 6-8 hours post consumption 

5) There is no robust effect of RS4/resistant dextrin on biomarkers of satiety nor glycemic 

response 

 
Overall, the results presented in this dissertation are consistent with the majority of short-

term appetite studies investigating resistant starch or resistant dextrin in humans. When data 

on biomarkers, food intake and subjective appetite ratings are all collected, these studies 

often find significant impact in only one of those three categories. As explained in Chapter 2, 

each measure is evaluating a different aspect of overall appetite. As food intake is not strictly 

a result of physiological signals or subjective ratings of appetite, results across these 

categories will not always point in the same direction. The interesting thing in the presented 

work, as well as outside literature, is the inconsistencies in which commercially available 
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resistant starches are reported to impact these categories. When multiple measures are taken, 

there is evidence to support claims that resistant starches are fermented only [Chapter 5, 

Reference 1] have effects on appetite only [Chapter 4, References 2, 3], impact short-term 

food intake only [Chapter 3, References 4, 5], or only change glycemic response [6, 7]. Other 

studies testing multiple sources of fiber have found only minor effects between different fiber 

sources [8, 9] with no effects relative to rapidly digestible starch.  

 
Multiple hypothesis testing in short-term feeding studies is a common practice and is the 

most efficient way to collect data on closely related topics. However, incomplete reporting of 

such data can further confuse a topic already complicated by variation in fiber types, fiber 

amount and dose timing. Although limited registries, such as clinicaltrial.gov, track some 

human studies from start to finish, in the aforementioned studies, it is unclear as to which of 

the reported measures was the primary outcome of the study and if that outcome was set 

before data observation. It is therefore likely that the inconsistent effects of resistant 

starch/resistant dextrin on the human appetite system reported in recent reviews [10, 11] are 

due in part to type I errors in the reporting of post-hoc analyses. Moreover, due to publication 

bias, the published literature may not fully represent the body of work that has been 

conducted on this topic. Publication pressures may result in both selective outcome reporting 

in published papers and not publishing null findings [12, 13].  

 
Regardless of reported primary outcomes, short-term feeding studies investigating the 

effects of resistant starch/resistant dextrin are nearly exclusively framed around helping to 

fight the obesity epidemic. Furthermore, there is no significant change in methodology 

associated with differences in reported primary outcomes (subjective appetite, biomarkers or 
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food intake).  While changes in biomarkers and subjective measures of appetite are proxies 

of motivation to eat, food intake is the only measured outcome that has a direct impact on 

energy balance. Although the reliability of short-term feeding study results being 

representative of longer-term eating patterns is questionable, the greatest mechanistic 

evidence short-term studies can provide to explain the correlation between fiber consumption 

and lower body weight is to demonstrate changes in food intake.  

 
Overall, the studies presented in this dissertation are consistent with previous studies’ 

observations of no robust effect of RS4 or resistant dextrin on short-term food intake [1, 5, 

8]. For the studies in which statistically significant treatment effects were observed [Chapter 

3, References 5], the magnitude of the decreased food intake was fairly small (~50 kcal for 

single meal effects or 200kcal for single day effects). To our knowledge the study described 

in Chapter 3 is the first to show an impact of RS4 on short-term energy intake. The small 

magnitude of RS4/resistant dextrin purported effect on food intake is not entirely unexpected 

given the numerous physiological and environmental stimuli that drive food intake. As a 

concept, it may be unreasonable to expect a small change in the consumption of any single 

nutrient to have sweeping effects on appetite or short-term food intake.  

 
The modest effects of commercially available RS4 and resistant dextrins on appetite and 

short-term food intake demonstrate that chemically modified fibers may not be as effective as 

naturally occurring fiber types on these measures. Much of the research that links fiber 

consumption with increased satiety has been conducted with whole foods and fibers in their 

naturally occurring food matrix [14]. These results call into question the assumption that 

fiber fortification of low-fiber foods will have the same physiological and behavior benefits 
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observed with increased consumption of naturally occurring high fiber foods. While the 

uneven effectiveness of naturally occurring versus chemically modified fibers may be 

attributable in part to differences in chemical structure of the fibers, differences in the food 

matrix most certainly contribute. Fiber fortification of often targets snack foods usually with 

high fat or high sugar content while naturally occurring fibers are found in staple foods such 

as grains and produce. It is possible that any modest effects of RS4/resistant dextrin on short-

term food intake are nullified by the high caloric content of the vehicle food. Therefore 

increased consumption of fiber-fortified foods may actually lead to greater overall energy 

intake and a positive energy balance over time.  

 
Finally, the lack of robust effects of RS4 and resistant starch on appetite and single day 

food intake shows that the correlation between fiber consumption and lower body may not be 

mediated through changes in these short-term outcomes. As it is it unclear if fiber impacts 

short and long-term food intake in the same way, research studies investigating effects of 

long-term fiber supplementation should be considered separately. Studies in which resistant 

starch was supplemented for at least one week show mixed impacts on longer-term food 

intake and body weight [15-17]. As is true for short-term feeding studies, the reported effects 

of fiber on total day energy consumption in these longer-term studies are partially 

confounded by the assumption that fiber provides no calories. Further research into the 

energy gained through fiber fermentation and SCFA production should be researched and 

incorporated into studies investigating the impact of fiber on food intake and body weight.  
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Recommendations for Future Research 

 
Continued research in the short-term effects of commercial fiber ingredients like 

those used in these studies should pay particular attention to the qualities of the test vehicle 

being used. The general importance of using test foods that make sense for the time of day 

being administered has been previously discussed as a consideration for all short-term 

appetite studies [17]. Specific to fiber research, the satiation characteristics of the test food 

should also be evaluated so as to not mask potential fiber effects. The work presented in this 

dissertation, along with outside work collectively indicates increased potential to identify an 

effect of fiber when a low satiety vehicle such as beverages or yogurt is used [5, 18-20].  To 

more easily evaluate the efficacy of new fibers, it may be prudent to identify a set of 

standardized test vehicles to use in short-term appetite studies. 

 
As part of choosing an optimal test vehicle, changes in orosensory characteristics 

between the control and test products should also be considered. There are few studies that 

rigorously evaluate orosensory changes of test foods being provided. As discussed in the 

literature review of this dissertation, orosensory characteristics play a significant role in 

appetite and short-term energy intake. Replacement of rapidly digestible flour with resistant 

starch flour in bread type foods often leads to a softer or unrecognizable texture as compared 

to the control food. Other fibers may create more dense or dry textures when used in recipes. 

Future work should deliberately investigate the orosensory qualities of test and control 

vehicles and work to match them as closely as possible.   

 
In addition to vehicle considerations, there should also be more attention paid to the 

target population studied. The results from the presented work along with systematic reviews 
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conducted of fiber’s potential effects on appetite and satiety [10, 11] show great 

inconsistencies in fiber treatment effects in a young, healthy, adult population. While 

methodology difference certainly plays a role in the variation between studies, the non-

specific nature of the target population may also contribute.  Identification of those 

individuals who would benefit most from a fiber intervention such as habitual low fiber 

consumers or obese individuals may prove beneficial in truly evaluating the efficacy of a 

fiber intervention.  Low fiber consumers may be more sensitive to increases in fiber 

consumption, while obese individuals have been shown to respond differently than lean 

individuals in appetite and short-term energy intake studies [21-23]. To date, not much 

research has been conducted to assess the effects of fiber on these specific populations.  
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